特色:
模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。它是信息科学和人工智能的重要组成部分,主要应用领域是图像分析与处理、语音识别、声音分类、通信、计算机辅助诊断、数据挖掘等学科。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、动态编程和用于顺序数据的隐马尔可夫模型、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,主要更新了关于支持向量机和聚类算法的内容,重点研究了图像分析、语音识别和声音分类的特征生成。每章末均提供有习题与练习,且支持网站上提供有习题解答,以便于读者增加实际经验。 本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。