[套装书]基于混合方法的自然语言处理:神经网络模型与知识图谱的结合+自然语言处理中的贝叶斯分析(原书第2版)(2册)

作者
何塞·曼努埃尔·戈麦斯-佩雷斯,罗纳德·德诺,安德烈·加西亚-席尔瓦 谢伊·科恩
丛书名
智能科学与技术丛书
出版社
机械工业出版社
ISBN
9782109181456
简要
简介
内容简介书籍计算机书籍 ---------------------------8083978 - 基于混合方法的自然语言处理:神经网络模型与知识图谱的结合--------------------------- 本书分为三个部分:基于知识图谱和神经网络的构建部分;结合知识图谱和神经网络的混合体系结构;实际应用部分。在三个部分中,主题通常是独立的,允许读者快速、轻松地阅读所需的信息。本书的两个特点是实用性和拥有前沿信息。书中准确地演示了如何创建和使用上下文表示,对意义嵌入和知识图谱嵌入有着明确的处理方法,解释了使用它们的语言模型和Transformer体系结构。 ---------------------------8077118 - 自然语言处理中的贝叶斯分析(原书第2版)--------------------------- 本书涵盖了流利阅读NLP中贝叶斯学习方向的论文以及从事该领域的研究所需的方法和算法。这些方法和算法部分来自于机器学习和统计学,部分是针对NLP开发的。我们涵盖推理技术,如马尔科夫链、蒙特卡罗抽样和变分推理、贝叶斯估计和非参数建模。为了应对该领域的快速变化,本书新版增加了一个新的章节,关于贝叶斯背景下的表现学习和神经网络。我们还将介绍贝叶斯统计的基本概念,如先验分布、共轭性和生成式建模。最后,我们回顾了一些基本的NLP建模技术,如语法建模、神经网络和表示学习,以及它们在贝叶斯分析中的应用。
目录
[套装书具体书目]
8077118 - 自然语言处理中的贝叶斯分析(原书第2版) - 9787111669579 - 机械工业出版社 - 定价 89
8083978 - 基于混合方法的自然语言处理:神经网络模型与知识图谱的结合 - 9787111690696 - 机械工业出版社 - 定价 99



---------------------------8083978 - 基于混合方法的自然语言处理:神经网络模型与知识图谱的结合---------------------------


推荐序一
推荐序二
译者序
前言
第一部分 预备知识和构建模块
第1章 混合自然语言处理简介 2
1.1 知识图谱、嵌入和语言模型简史 2
1.2 自然语言处理中知识图谱和神经网络方法的结合 4
第2章 单词、意义和知识图谱嵌入 6
2.1 引言 6
2.2 分布式单词表示 6
2.3 词嵌入 7
2.4 意义和概念嵌入 8
2.5 知识图谱嵌入 9
2.6 本章小结 13
第3章 理解词嵌入和语言模型 14
3.1 引言 14
3.2 语言模型 15
3.2.1 统计语言模型 15
3.2.2 神经语言模型 16
3.3 NLP迁移学习的预训练模型微调 16
3.3.1 ELMo 16
3.3.2 GPT 17
3.3.3 BERT 17
3.4 机器人检测中预训练语言模型的微调 18
3.4.1 实验结果与讨论 21
3.4.2 使用Transformer库对BERT进行微调 21
3.5 本章小结 27
第4章 从文本中捕获意义作为词嵌入 28
4.1 引言 28
4.2 下载一个小文本语料库 29
4.3 一种学习词嵌入的算法 29
4.4 使用Swivel prep生成共现矩阵 30
4.5 从共现矩阵中学习嵌入 31
4.6 读取并检查存储的二进制嵌入 32
4.7 练习:从古腾堡工程中创建词嵌入 33
4.7.1 下载语料库并进行预处理 33
4.7.2 学习嵌入 34
4.7.3 检查嵌入 34
4.8 本章小结 34
第5章 捕获知识图谱嵌入 35
5.1 引言 35
5.2 知识图谱嵌入 35
5.3 为WordNet创建嵌入 37
5.3.1 选择嵌入算法:HolE 37
5.3.2 将WordNet知识图谱转换为所需输入 39
5.3.3 学习嵌入 44
5.3.4 检查嵌入结果 44
5.4 练习 47
5.4.1 练习:在自己的知识图谱上训练嵌入 47
5.4.2 练习:检查WordNet 3.0的预计算嵌入 47
5.5 本章小结 48
第二部分 神经网络与知识图谱的结合
第6章 从文本语料库、知识图谱和语言模型中构建混合表达 50
6.1 引言 50
6.2 准备工作和说明 51
6.3 Vecsigrafo的概念及构建方式 51
6.4 实现 53
6.5 训练Vecsigrafo 54
6.5.1 标记化和词义消歧 56
6.5.2 词汇表和共现矩阵 58
6.5.3 从共现矩阵学习嵌入 62
6.5.4 检查嵌入 64
6.6 练习:探索一个预先计算好的Vecsigrafo 66
6.7 从Vecsigrafo到Transigrafo 68
6.7.1 安装设置 70
6.7.2 训练Transigrafo 71
6.7.3 扩展知识图谱的覆盖范围 73
6.7.4 评估 Transigrafo 73
6.7.5 检查Transigrafo中的义项嵌入 75
6.7.6 探索Transigrafo嵌入的稳定性 77
6.7.7 额外的反思 81
6.8 本章小结 81
第7章 质量评估 82
7.1 引言 82
7.2 评估方法的概述 83
7.3 练习1:评估单词和概念嵌入 84
7.3.1 可视化探索 84
7.3.2 内在评估 85
7.3.3 词汇预测图 87
7.3.4 外在评估 90
7.4 练习2:评价通过嵌入获取的关系知识 90
7.4.1 下载embrela项目 91
7.4.2 下载生成的数据集 91
7.4.3 加载待评估的嵌入 92
7.4.4 学习模型 94
7.4.5 分析模型的结果 94
7.4.6 数据预处理:合并且增加字段 96
7.4.7 计算范围阈值和偏差数据集检测 97
7.4.8 发现统计上有意义的模型 99
7.4.9 关系型知识的评估结论 101
7.5 案例研究:评估和对比Vecsigrafo嵌入 101
7.5.1 比较研究 101
7.5.2 讨论 111
7.6 本章小结 114
第8章 利用Vecsigrafo捕获词法、语法和语义信息 116
8.1 引言 116
8.2 方法 118
8.2.1 Vecsigrafo:基于语料的单词–概念嵌入 118
8.2.2 联合嵌入空间 119
8.2.3 嵌入的评估 119
8.3 评估 120
8.3.1 数据集 121
8.3.2 单词相似度 121
8.3.3 类比推理 124
8.3.4 单词预测 125
8.3.5 科学文档的分类 127
8.4 讨论 129
8.5 练习:使用surface form对科学文献进行分类 130
8.5.1 导入所需的库 130
8.5.2 下载surface form的词嵌入和SciGraph论文 131
8.5.3 读取并准备分类数据集 131
8.5.4 surface form的词嵌入 133
8.5.5 创建嵌入层 134
8.5.6 训练一个卷积神经网络 134
8.6 本章小结 136
第9章 知识图谱的词嵌入空间对齐与应用 137
9.1 引言 137
9.2 概述及可能的应用 138
9.2.1 知识图谱的补全 139
9.2.2 超越多语言性:跨模态的词嵌入 139
9.3 词嵌入空间的对齐技术 140
9.3.1 线性对齐 140
9.3.2 非线性对齐 146
9.4 练习:寻找古代英语和现代英语的对应 146
9.4.1 下载小型文本语料库 146
9.4.2 学习基于老莎士比亚语料库的Swivel词嵌入 147
9.4.3 在WordNet之上加载UMBC的Vecsigrafo 149
9.4.4 练习的结论 149
9.5 本章小结 150
第三部分 应用
第10章 一种虚假信息分析的混合方法 152
10.1 引言 152
10.2 虚假信息检测 153
10.2.1 定义和背景 153
10.2.2 技术方法 155
10.3 应用:构建断言数据库 156
10.3.1 训练一个语义断言编码器 156
10.3.2 创建嵌入的一个语义索引并进行探索 165
10.3.3 以STS-B开发数据集填充索引 165
10.3.4 为一个断言数据集创建另一个索引 166
10.3.5 加载数据集到一个Pandas的DataFrame 167
10.3.6 构建一个断言数据库的总结 171
10.4 应用:假新闻和欺骗性语言检测 171
10.4.1 使用深度学习的基本文档分类 172
10.4.2 使用HolE的嵌入 176
10.4.3 使用Vecsigrafo UMBC WNet的嵌入 178
10.4.4 HoLE和UMBC嵌入的结合 179
10.4.5 讨论与结果 180
10.5 通过一个知识图谱得到传播虚假信息的评分 182
10.5.1 Data Commons Claim-Review的知识图谱 182
10.5.2 不可信度评分的传播 187
10.6 本章小结 190
第11章 科学领域中文本与视觉信息的联合学习 191
11.1 引言 191
11.2 图例–标题对应分析的模型与架构 193
11.3 数据集 195
11.4 评估图例–标题的对应分析任务 195
11.5 图例–标题的对应分析与图像–句子匹配的对比 197
11.6 标题与图例的分类 199
11.7 教科书问答的多模态机器理解 200
11.8 图例–标题对应分析的练习 201
11.8.1 预备步骤 201
11.8.2 图例–标题的对应分析 203
11.8.3 图像–句子匹配 216
11.8.4 标题/图例分类 219
11.8.5 教科书问答 223
11.9 本章小结 228
第12章 展望自然语言处理的未来 229
12.1 最终的评论、想法和愿景 229
12.2 趋势是什么?社会各界的意见 231
参考文献 238



---------------------------8077118 - 自然语言处理中的贝叶斯分析(原书第2版)---------------------------


译者序
第2版前言
第1版前言
第1版致谢
第1章 基础知识 1
1.1 概率测度 1
1.2 随机变量 2
1.2.1 连续随机变量和离散随机变量 2
1.2.2 多元随机变量的联合分布 3
1.3 条件分布 4
1.3.1 贝叶斯法则 5
1.3.2 独立随机变量与条件独立随机变量 6
1.3.3 可交换的随机变量 6
1.4 随机变量的期望 7
1.5 模型 9
1.5.1 参数模型与非参数模型 9
1.5.2 模型推断 10
1.5.3 生成模型 11
1.5.4 模型中的独立性假定 13
1.5.5 有向图模型 13
1.6 从数据场景中学习 15
1.7 贝叶斯学派和频率学派的哲学(冰山一角) 17
1.8 本章小结 17
1.9 习题 18
第2章 绪论 19
2.1 贝叶斯统计与自然语言处理的结合点概述 19
2.2 第一个例子:隐狄利克雷分配模型 22
2.2.1 狄利克雷分布 26
2.2.2 推断 28
2.2.3 总结 29
2.3 第二个例子:贝叶斯文本回归 30
2.4 本章小结 31
2.5 习题 31
第3章 先验 33
3.1 共轭先验 33
3.1.1 共轭先验和归一化常数 36
3.1.2 共轭先验在隐变量模型中的应用 37
3.1.3 混合共轭先验 38
3.1.4 重新归一化共轭分布 39
3.1.5 是否共轭的讨论 39
3.1.6 总结 40
3.2 多项式分布和类别分布的先验 40
3.2.1 再谈狄利克雷分布 41
3.2.2 Logistic正态分布 44
3.2.3 讨论 48
3.2.4 总结 49
3.3 非信息先验 49
3.3.1 均匀不正常先验 50
3.3.2 Jeffreys先验 51
3.3.3 讨论 51
3.4 共轭指数模型 52
3.5 模型中的多参数抽取 53
3.6 结构先验 54
3.7 本章小结 55
3.8 习题 56
第4章 贝叶斯估计 57
4.1 隐变量学习:两种观点 58
4.2 贝叶斯点估计 58
4.2.1 最大后验估计 59
4.2.2 基于最大后验解的后验近似 64
4.2.3 决策-理论点估计 65
4.2.4 总结 66
4.3 经验贝叶斯 66
4.4 后验的渐近行为 68
4.5 本章小结 69
4.6 习题 69
第5章 采样算法 70
5.1 MCMC算法:概述 71
5.2 MCMC推断的自然语言处理模型结构 71
5.3 吉布斯采样 73
5.3.1 坍塌吉布斯采样 76
5.3.2 运算符视图 79
5.3.3 并行化的吉布斯采样器 80
5.3.4 总结 81
5.4 Metropolis-Hastings算法 82
5.5 切片采样 84
5.5.1 辅助变量采样 85
5.5.2 切片采样和辅助变量采样在自然语言处理中的应用 85
5.6 模拟退火 86
5.7 MCMC算法的收敛性 86
5.8 马尔可夫链:基本理论 88
5.9 MCMC领域外的采样算法 89
5.10 蒙特卡罗积分 91
5.11 讨论 93
5.11.1 分布的可计算性与采样 93
5.11.2 嵌套的MCMC采样 93
5.11.3 MCMC方法的运行时间 93
5.11.4 粒子滤波 93
5.12 本章小结 95
5.13 习题 95
第6章 变分推断 97
6.1 边缘对数似然的变分界 97
6.2 平均场近似 99
6.3 平均场变分推断算法 100
6.3.1 狄利克雷-多项式变分推断 101
6.3.2 与期望最大化算法的联系 104
6.4 基于变分推断的经验贝叶斯 106
6.5 讨论 106
6.5.1 推断算法的初始化 107
6.5.2 收敛性诊断 107
6.5.3 变分推断在解码中的应用 107
6.5.4 变分推断最小化KL散度 108
6.5.5 在线的变分推断 109
6.6 本章小结 109
6.7 习题 109
第7章 非参数先验 111
7.1 狄利克雷过程:三种视角 112
7.1.1 折棍子过程 112
7.1.2 中餐馆过程 114
7.2 狄利克雷过程混合模型 115
7.2.1 基于狄利克雷过程混合模型的推断 116
7.2.2 狄利克雷过程混合是混合模型的极限 118
7.3 层次狄利克雷过程 119
7.4 PitmanYor过程 120
7.4.1 Pitman-Yor过程用于语言建模 121
7.4.2 Pitman-Yor过程的幂律行为 122
7.5 讨论 123
7.5.1 高斯过程 124
7.5.2 印度自助餐过程 124
7.5.3 嵌套的中餐馆过程 125
7.5.4 距离依赖的中餐馆过程 125
7.5.5 序列记忆器 126
7.6 本章小结 126
7.7 习题 127
第8章 贝叶斯语法模型 128
8.1 贝叶斯隐马尔可夫模型 129
8.2 概率上下文无关语法 131
8.2.1 作为多项式分布集的PCFG 133
8.2.2 PCFG的基本推断算法 133
8.2.3 作为隐马尔可夫模型的PCFG 136
8.3 贝叶斯概率上下文无关语法 137
8.3.1 PCFG的先验 137
8.3.2 贝叶斯PCFG的蒙特卡罗推断 138
8.3.3 贝叶斯PCFG的变分推断 139
8.4 适配器语法 140
8.4.1 Pitman-Yor适配器语法 141
8.4.2 PYAG的折棍子视角 142
8.4.3 基于PYAG的推断 143
8.5 层次狄利克雷过程PCFG 144
8.6 依存语法 147
8.7 同步语法 148
8.8 多语言学习 149
8.8.1 词性标注 149
8.8.2 语法归纳 151
8.9 延伸阅读 152
8.10 本章小结 153
8.11 习题 153
第9章 表征学习与神经网络 155
9.1 神经网络与表征学习:为什么是现在 155
9.2 词嵌入 158
9.2.1 词嵌入的skip-gram模型 158
9.2.2 贝叶斯skip-gram词嵌入 160
9.2.3 讨论 161
9.3 神经网络 162
9.3.1 频率论估计和反向传播算法 164
9.3.2 神经网络权值的先验 166
9.4 神经网络在自然语言处理中的现代应用 168
9.4.1 循环神经网络和递归神经网络 168
9.4.2 梯度消失与梯度爆炸问题 169
9.4.3 神经编码器-解码器模型 172
9.4.4 卷积神经网络 175
9.5 调整神经网络 177
9.5.1 正则化 177
9.5.2 超参数调整 178
9.6 神经网络生成建模 180
9.6.1 变分自编码器 180
9.6.2 生成对抗网络 185
9.7 本章小结 186
9.8 习题 187
结束语 189
附录A 基本概念 191
附录B 概率分布清单 197
参考文献 203

推荐

车牌查询
桂ICP备20004708号-3