| 作者 |
| 周力行 |
| 丛书名 |
| 出版社 |
| 清华大学出版社 |
| ISBN |
| 9787302507543 |
| 简要 |
| 简介 |
| 内容简介 本书在介绍多相流、湍流和燃烧理论的基础上,给出了多相湍流反应流动的基本方程、单相湍流和多相湍流以及湍流燃烧的数学物理模型,讨论了求解多相湍流反应流动的数值模拟方法,*后列举了在不同燃烧装置中的应用实例。 本书适合高校和科研院所工程热物理、流体力学、热能动力等专业的师生和研究工作者阅读。 Fundamentals of multiphase flows, turbulent flows and combustion theory; Basic equations of multiphase turbulent reacting flows; modeling of turbulent flows; modeling of multiphase turbulent flows; modeling of turbulent combusting flows; numerical methods for simulation of multiphase turbulent reacting flows. 关键词:流体,湍动,多相反应,燃烧 |
| 目录 |
| Preface i Nomenclature iii Introduction v 1. Some Fundamentals of Dispersed Multiphase Flows 1 1.1 Particle/Spray Basic Properties 1 1.1.1 Particle/Droplet Size and Its Distribution 1 1.1.2 Apparent Density and Volume Fraction 2 1.2 Particle Drag, Heat, and Mass Transfer 2 1.3 Single-Particle Dynamics 3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 References Single-Particle Motion Equation 3 Motion of a Single Particle in a Uniform Flow Field 4 Particle Gravitational Deposition 4 Forces Acting on Particles in Nonuniform Flow Field 5 1.3.4.1 Magnus Force 5 1.3.4.2 Saffman Force 5 1.3.4.3 Particle Thermophoresis, Electrophoresis, and Photophoresis 5 Generalized Particle Motion Equation 6 Recent Studies on Particle Dynamics 6 7 Further Reading 8 2. Basic Concepts and Description of Turbulence 9 2.1 Introduction 9 2.2 Time Averaging 9 2.3 Probability Density Function 10 2.4 Correlations, Length, and Time Scales 12 References 13 3. Fundamentals of Combustion Theory 15 3.1 Combustion and Flame 15 3.2 Basic Equations of Laminar Multicomponent Reacting Flows and Combustion 16 3.2.1 Thermodynamic Relationships of Multicomponent Gases 16 xiii 3.2.2 Molecular Transport Laws of Multicomponent Reacting Gases 18 3.2.3 Basic Relationships of Chemical Kinetics 19 3.2.4 The Reynolds Transport Theorem 20 3.2.5 Continuity and Diffusion Equations 21 3.2.6 Momentum Equation 22 3.2.7 Energy Equation 23 3.2.8 Boundary Conditions at the Interface and Stefan Flux 26 3.3 Ignition and Extinction 30 3.3.1 Basic Concept 30 3.3.2 Dimensional Analysis 30 3.3.3 Ignition in an Enclosed VesselSimonov’s Unsteady Model 31 3.3.4 Ignition Lag (Induction Period) 34 3.3.5 Ignition by a Hot PlateKhitrin-Goldenberg Model 35 3.3.6 Ignition and ExtinctionVulis Model 37 3.4 Laminar Premixed and Diffusion Combustion 41 3.4.1 Background 41 3.4.2 Basic Equations and Their Properties 41 3.4.3 Two-Zone Approximate Solution 43 3.4.4 Laminar Diffusion Flame 46 3.5 Droplet Evaporation and Combustion 47 3.5.1 Background 47 3.5.2 Droplet Evaporation in Stagnant Air 48 3.5.3 Basic Equations for Droplet Evaporation and Combustion 48 3.5.4 Droplet Evaporation With and Without Combustion 49 3.5.5 Droplet Evaporation and Combustion under Forced Convection 50 3.5.6 The d2 Law 52 3.5.7 Experimental Results 52 3.5.8 Droplet Ignition and Extinction 54 3.6 Solid-Fuel: Coal-Particle Combustion 54 3.6.1 Background 54 3.6.2 Coal Pyrolyzation (Devolatilization) 55 3.6.3 Carbon Oxidation 56 3.6.4 Carbon OxidationBasic Equations 56 3.6.5 Carbon OxidationSingle-Flame-Surface Model-Only Reaction 1 or 2 at the Surface 57 3.6.6 Carbon OxidationTwo-Flame-Surface Model 60 3.6.7 Coal-Particle Combustion 62 3.7 Turbulent Combustion and Flame Stabilization 64 3.7.1 Background 64 3.7.2 Turbulent Jet Diffusion Flame 64 3.7.3 Turbulent Premixed FlameDamkohler-Shelkin’s Wrinkled-Flame Model 66 Contents xY 3.7.4 Turbulent Premixed FlameSummerfield-Shetinkov’s Volume Combustion Model 67 3.7.5 Flame Stabilization 67 3.8 Conclusion on Combustion Fundamentals 69 References 69 4. Basic Equations of Multiphase Turbulent Reacting Flows 71 4.1 The Control Volume in a Multiphase-Flow System 71 4.2 The Concept of Volume Averaging 72 4.3 Microscopic” Conservation Equations Inside Each Phase 73 4.4 The Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase Flows 73 4.5 The Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows 78 4.6 The PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged Equations 80 4.7 The Two-Phase Reynolds Stress and Scalar Transport Equations 83 References 87 5. Modeling of Single-Phase Turbulence 89 5.1 Introduction 89 5.2 The Closure of Single-Phase Turbulent Kinetic Energy Equation 90 5.3 The k-ε Two-Equation Model and Its Application 92 5.4 The Second-Order Moment Closure of Single-Phase Turbulence 96 5.5 The Closed Model of Reynolds Stresses and Heat Fluxes 99 5.6 The Algebraic Stress and Flux ModelsExtended k-ε Model 101 5.7 The Application of DSM and ASM Models and Their Comparison with Other Models 103 5.8 Large-Eddy Simulation 112 5.8.1 Filtration 112 5.8.2 SGS Stress Models 113 5.8.3 LES of Swirling Gas Flows 114 5.9 Direct Numerical Simulation 116 References 119 6. Modeling of Dispersed Multiphase Turbulent Flows 121 6.1 Introduction 121 6.2 The Hinze-Tchen’s Algebraic Model of Particle Turbulence 124 6.3 The Unified Second-Order Moment Two-Phase Turbulence Model 124 6.4 The k 2 ε 2 kp and k 2 ε 2 Ap Two-Phase Turbulence Model 128 6.5 The Application and Validation of USM, k 2 ε 2 kp -kpg and k 2 ε 2 Ap Models 129 6.6 An Improved Second-Order Moment Two-Phase Turbulence Model 134 6.7 The Mass-Weighted Averaged USM Two-Phase Turbulence Model 136 6.8 The DSM-PDF and k 2 ε-PDF Two-Phase Turbulence Models 141 6.9 An SOM-MC Model of Swirling Gas-Particle Flows 144 6.10 The Nonlinear k 2 ε 2 kp Two-Phase Turbulence Model 146 6.11 The Kinetic Theory Modeling of Dense Particle (Granular) Flows 150 6.12 Two-Phase Turbulence Models for Dense Gas-Particle Flows 153 6.13 The Eulerian-Lagrangian Simulation of Gas-Particle Flows 155 6.13.1 Governing Equations for the Deterministic Trajectory Model 156 6.13.2 Modification for Particle Turbulent Diffusion 157 6.13.3 The Stochastic Trajectory Model 159 6.13.4 The DEM Simulation of Dense Gas-Particle Flows 161 6.14 The Large-Eddy Simulation of Turbulent Gas-Particle Flows 163 6.14.1 Eulerian-Lagrangian LES of Swirling Gas-Particle Flows 165 6.14.2 Eulerian-Lagrangian LES of Bubble-Liquid Flows 166 6.14.3 Two-Fluid LES of Swirling Gas-Particle Flows 167 6.14.4 Application of LES in Engineering Gas-Particle Flows 170 6.15 The Direct Numerical Simulation of Dispersed Multiphase Flows 172 References 177 7. Modeling of Turbulent Combustion 183 7.1 Introduction 183 7.2 The Time-Averaged Reaction Rate 183 7.3 The Eddy-Break-Up (EBU) Model/Eddy Dissipation Model (EDM) 184 7.4 The Presumed PDF Models 186 7.4.1 The Probability Density Distribution Function 186 7.4.2 The Simplified PDF-Local Instantaneous Nonpremixed Fast-Chemistry Model 187 7.4.3 The Simplified PDF-Local Instantaneous Equilibrium Model 191 7.4.4 The Simplified-PDF Finite-Rate Model 194 7.5 The PDF Transport Equation Model 198 7.6 The Bray-Moss-Libby (BML) Model 200 7.7 The Conditional Moment Closure (CMC) Model 201 7.8 The Laminar-Flamelet Model 202 Contents xYii 7.9 The Second-Order Moment Combustion Model 204 7.9.1 The Early Developed Second-Order Moment Model 204 7.9.2 An Updated Second-Order Moment (SOM) Model 207 7.9.3 Application of the SOM Model in RANS Modeling 208 7.9.4 Validation of the SOM Model by DNS 212 7.10 Modeling of Turbulent Two-Phase Combustion 215 7.10.1 Two-Fluid Modeling of Turbulent Two-Phase Combustion 216 7.10.2 Two-Fluid-Simulation of Coal Combustion in a Combustor with High-Velocity Jets 218 7.10.3 Two-Fluid Modeling of Coal Combustion and NO Formation in a Swirl Combustor 221 7.10.4 Eulerian-Lagrangian Modeling of Two-Phase Combustion 223 7.11 Large-Eddy Simulation of Turbulent Combustion 224 7.11.1 LES Equations and Closure Models for Simulating Gas Turbulent Combustion 224 7.11.2 LES of Swirling Diffusion Combustion, Jet Diffusion Combustion, and Bluff-Body Premixed Combustion 226 7.11.3 LES of Ethanol-Air Spray Combustion 232 7.11.4 LES of Swirling Coal Combustion 235 7.12 Direct Numerical Simulation of Turbulent Combustion 242 References 249 8. The Solution Procedure for Modeling Multiphase Turbulent Reacting Flows 253 8.1 The PSIC Algorithm for Eulerian-Lagrangian Models 253 8.2 The LEAGAP Algorithm for E-E-L Modeling 256 8.3 The PERT Algorithm for Eulerian-Eulerian Modeling 257 8.4 The GENMIX-2P and IPSA Algorithms for Eulerian-Eulerian Modeling 257 References 260 9. Simulation of Flows and Combustion in Practical Fluid Machines, Combustors, and Furnaces 261 9.1 An Oil-Water Hydrocyclone 261 9.2 A Gas-Solid Cyclone Separator 262 9.3 A Nonslagging Vortex Coal Combustor 266 9.4 A Spouting-Cyclone Coal Combustor 268 9.5 Pulverized-Coal Furnaces 273 9.6 Spray Combustors 290 9.7 Concluding Remarks 307 References 308 Index 311 |