| 作者 |
| 工业和信息化部人才交流中心 |
| 丛书名 |
| 物联网与人工智能应用开发丛书 |
| 出版社 |
| 电子工业出版社 |
| ISBN |
| 9787121345876 |
| 简要 |
| 简介 |
| 内容简介 本书全面介绍了当前主流的电机和电源数字控制系统的基本原理、相关控制技术理论和市场应用场景,并针对电机和电源数字控制系统的架构,分享了电机和电源数字控制用的微控制器的基本资源需求,以及市场上主流厂商的*技术发展状况。此外,对基于微控制器的控制软件编程技术及相关调试技术也进行了总结阐述。除了理论介绍,本书篇幅上着墨于工程实践的角度出发,介绍基于恩智浦半导体微控制器实现的主流电机类型和电源拓扑的控制案例,分享了实际工程开发中有关微控制器控制的应用经验和方法。其中电机控制的应用内容包括永磁同步电机(PMSM)的无位置传感器矢量控制(FOC)和有位置传感器的伺服控制、基于转子磁链定向的交流异步电机(ACIM)矢量控制、无刷直流电机的无位置传感器控制、开关磁阻电机的无位置传感器峰值电流检测控制、步进电机的位置开环细分控制和位置闭环伺服控制;电源控制部分则包括以图腾柱无桥式PFC 变换器和LLC DC/DC 谐振变换器为例的AC/DC 控制,以及符合无线充电联盟(WPC)Qi 标准的15W 感应式无线充电系统的控制。本书面向已具备一定电机、电源、控制和微控制器基本知识的读者,可为高校电气、电力电子专业的研究生和企业工程技术人员提供参考和借鉴。 |
| 目录 |
| 第1 章 电力电子技术应用综述 001 1.1 电力电子技术发展现状 002 1.2 市场应用场景 005 1.3 未来发展方向展望 010 1.4 小结 011 第2 章 电机和电源控制简介 013 2.1 常见电机类型及其控制技术 014 2.1.1 直流电机 014 2.1.2 交流电机 016 2.2 常见电力电子变换拓扑 020 2.2.1 整流电路 021 2.2.2 降压斩波电路 024 2.2.3 升压斩波电路 025 2.2.4 升降压斩波电路 025 2.2.5 谐振变换器电路 026 2.3 感应式无线充电技术 029 2.4 小结 031 第3 章 电机和电源控制中的微控制器技术介绍 033 3.1 典型电机和电源数字控制系统架构 034 3.2 电机和电源控制中的微控制器技术概况 036 3.2.1 电机和电源控制中的微控制器技术发展现状 037 3.2.2 电机和电源控制中的微控制器技术发展趋势 041 3.2.3 恩智浦半导体电机和电源微控制器产品路线规划 及主要特点 043 3.3 小结 046 第4 章 控制软件编程基础及相关调试技术 049 4.1 数字控制软件编程基础 050 4.1.1 信号数字化处理 050 4.1.2 变量定标 052 4.1.3 参数标幺表示 053 4.2 实时控制软件架构实现简介 054 4.2.1 状态机 054 4.2.2 时序调度机制 057 4.3 实时控制软件开发及调试 058 4.3.1 实时控制软件库的应用 058 4.3.2 实时调试工具 064 4.3.3 相关调试技巧 068 4.4 小结 070 第5 章 永磁同步电机的数字控制 071 5.1 永磁同步电机的数学模型 072 5.1.1 三相永磁同步电机数学模型 073 5.1.2 两相静止坐标系的数学模型 074 5.1.3 两相转子同步坐标系的数学模型 075 5.1.4 坐标变换 077 5.2 永磁同步电机的磁场定向控制 078 5.2.1 电流控制环 079 5.2.2 转速控制环 082 5.3 最大转矩电流比和弱磁控制 083 5.3.1 最大转矩电流比控制 084 5.3.2 弱磁控制 087 5.4 无位置传感器控制 092 5.4.1 基于反电动势的位置估计 092 5.4.2 基于高频信号注入的位置估计 096 5.4.3 基于定子磁通的位置估计 099 5.5 电机控制所需的微控制器资源 102 5.5.1 脉冲宽度调制器(PWM) 103 5.5.2 模/数转换器(ADC) 105 5.5.3 正交解码器(DEC) 105 5.5.4 定时器(Timer) 106 5.5.5 PWM 和ADC 硬件同步 106 5.6 典型永磁同步电机控制方案 107 5.6.1 带位置传感器的伺服控制 107 5.6.2 无位置传感器的磁场定向控制 |