[套装书]深度学习基础教程+深度学习:卷积神经网络技术与实践(2册)

作者
赵宏 于刚 吴美学 张浩然 屈芳瑜 王鹏 参 高敬鹏
丛书名
人工智能技术丛书
出版社
机械工业出版社
ISBN
9782108101813
简要
简介
内容简介书籍计算机书籍 ---------------------------8082987 - 深度学习基础教程--------------------------- 深度学习是当前的人工智能领域的技术热点。本书面向高等院校理工科专业学生的需求,介绍深度学习相关概念,培养学生研究、利用基于各类深度学习架构的人工智能算法来分析和解决相关专业问题的能力。本书内容包括深度学习概述、人工神经网络基础、卷积神经网络和循环神经网络、生成对抗网络和深度强化学习、计算机视觉以及自然语言处理。本书适合作为高校理工科相关专业深度学习、人工智能相关课程的教材,也适合作为技术人员的参考书或自学读物。 ---------------------------8069658 - 基于深度学习的自然语言处理--------------------------- 将深度学习方法应用于各种自然语言处理任务可以将你的计算算法在速度和准确性方面提升到一个全新的水平。本书首先介绍自然语言处理领域的基本构件,接着介绍了使用最先进的神经网络模型可以解决的问题。随着学习的深入,读者将学习卷积神经网络、递归神经网络和迭代神经网络,此外还包括长期短期记忆网络(LSTM)。在后面的章节中,读者将能够使用自然语言处理技术开发应用程序,例如注意力模型和集束搜索(Beam Search)。
目录
[套装书具体书目]
8071145 - 深度学习:卷积神经网络技术与实践 - 9787111657378 - 机械工业出版社 - 定价 79
8082987 - 深度学习基础教程 - 9787111687320 - 机械工业出版社 - 定价 59



---------------------------8082987 - 深度学习基础教程---------------------------


前言
第1章 深度学习概述 1
1.1 深度学习的发展历程 1
1.1.1 深度学习的历史 1
1.1.2 深度学习领域的重要人物 5
1.2 深度学习的关键技术 7
1.2.1 深度学习的机理 7
1.2.2 深度学习的三要素 8
1.2.3 数据的特征 9
1.2.4 深度学习的主要模型 10
1.2.5 深度学习模型的训练过程 11
1.2.6 深度学习模型的学习方式 12
1.2.7 深度学习的常用框架 14
1.3 深度学习网络的发展脉络及应用领域 18
1.3.1 深度学习网络的发展脉络 18
1.3.2 深度学习的应用领域 19
课后习题 21
参考文献 22
第2章 人工神经网络基础 24
2.1 人工神经网络的生物学基础 24
2.1.1 神经元的基本模型 24
2.1.2 突触的结构 26
2.2 人工神经元模型 26
2.2.1 人工神经元的数学模型 26
2.2.2 常见的人工神经元模型 30
2.3 人工神经网络模型 34
2.3.1 神经网络的基本结构 34
2.3.2 神经网络的分类 36
2.4 神经网络的前向传播机制 39
2.5 神经网络的反向传播机制 40
2.6 基于反向传播算法的神经网络设计流程 43
2.7 人工神经网络的参数优化问题 45
2.7.1 神经网络层数的优化问题 45
2.7.2 归一化指数函数softmax 47
2.7.3 学习率 49
2.7.4 欠拟合和过拟合问题 50
课后习题 52
参考文献 53
第3章 卷积神经网络和循环神经网络 54
3.1 卷积神经网络 54
3.1.1 卷积神经网络的基本概念 54
3.1.2 卷积神经网络的结构 58
3.1.3 卷积神经网络的常用架构 65
3.2 循环神经网络 72
3.2.1 循环神经网络的基本概念 72
3.2.2 循环神经网络的应用——语言模型 77
3.2.3 循环神经网络的梯度问题及解决方法 80
3.2.4 循环神经网络的改进 84
课后习题 87
参考文献 89
第4章 生成对抗网络和深度强化学习 92
4.1 生成对抗网络 92
4.1.1 生成对抗网络概述 92
4.1.2 生成对抗网络的基本原理 94
4.1.3 几种改进的生成对抗网络模型 99
4.1.4 生成对抗网络的应用 103
4.2 强化学习 106
4.2.1 强化学习概述 106
4.2.2 强化学习的决策过程 108
4.2.3 Q-Learning算法 111
4.2.4 深度强化学习 112
课后习题 118
参考文献 119
第5章 计算机视觉 121
5.1 计算机视觉概述 121
5.1.1 计算机视觉的历史 122
5.1.2 计算机视觉的挑战与机遇 123
5.1.3 计算机视觉常见的数据集 125
5.1.4 计算机视觉处理的基本流程 130
5.2 图像预处理 131
5.2.1 图像去噪 131
5.2.2 图像归一化 133
5.2.3 图像分割技术 134
5.3 计算机视觉常用的网络结构 136
5.3.1 图像分类常用的深度学习网络结构 136
5.3.2 视频分类常用的深度学习网络结构 140
5.3.3 目标检测常用的深度学习网络结构 144
课后习题 152
参考文献 154
第6章 自然语言处理 156
6.1 自然语言处理概述 156
6.1.1 发展历史 157
6.1.2 自然语言处理的过程 158
6.1.3 基础技术 160
6.1.4 词嵌入算法 162
6.1.5 N-gram语言模型 166
6.1.6 注意力机制 167
6.2 自然语言处理的应用模型 171
6.2.1 文本分类 171
6.2.2 自动文本摘要 175
6.2.3 自动问答系统 178
6.2.4 触发字检测 181
课后习题 182
参考文献 183



---------------------------8069658 - 基于深度学习的自然语言处理---------------------------


译者序
前言
第1章 自然语言处理 1
1.1 本章概览 1
1.2 自然语言处理的基础知识 1
1.3 自然语言处理的能力 3
1.4 自然语言处理中的应用 4
1.4.1 文本预处理 5
1.4.2 文本预处理技术 6
1.5 词嵌入 13
1.6 本章小结 22
第2章 自然语言处理的应用 23
2.1 本章概览 23
2.2 词性标注 24
2.2.1 词性 24
2.2.2 词性标注器 25
2.3 词性标注的应用 27
2.4 分块 33
2.5 加缝 35
2.6 命名实体识别 37
2.6.1 命名实体 37
2.6.2 命名实体识别器 38
2.6.3 命名实体识别的应用 38
2.6.4 命名实体识别器类型 39
2.7 本章小结 43
第3章 神经网络 44
3.1 本章概览 44
3.1.1 深度学习简介 44
3.1.2 机器学习与深度学习的比较 45
3.2 神经网络 46
3.3 训练神经网络 50
3.3.1 计算权重 51
3.3.2 损失函数 52
3.3.3 梯度下降算法 53
3.3.4 反向传播 56
3.4 神经网络的设计及其应用 57
3.4.1 有监督神经网络 57
3.4.2 无监督神经网络 57
3.5 部署模型即服务的基础 60
3.6 本章小结 62
第4章 卷积神经网络 63
4.1 本章概览 63
4.2 理解CNN的架构 65
4.2.1 特征提取 66
4.2.2 随机失活 68
4.2.3 卷积神经网络的分类 69
4.3 训练CNN 71
4.4 CNN的应用领域 77
4.5 本章小结 80
第5章 循环神经网络 81
5.1 本章概览 81
5.2 神经网络的早期版本 82
5.3 RNN 84
5.3.1 RNN架构 87
5.3.2 BPTT 88
5.4 更新和梯度流 90
5.4.1 调整权重矩阵Wy 90
5.4.2 调整权重矩阵Ws 90
5.4.3 关于更新Wx 92
5.5 梯度 94
5.5.1 梯度爆炸 94
5.5.2 梯度消失 94
5.5.3 Keras实现RNN 95
5.5.4 有状态与无状态 99
5.6 本章小结 102
第6章 门控循环单元 103
6.1 本章概览 103
6.2 简单RNN的缺点 104
6.3 门控循环单元 106
6.3.1 门的类型 108
6.3.2 更新门 108
6.3.3 重置门 110
6.3.4 候选激活函数 111
6.3.5 GRU变体 113
6.4 基于GRU的情感分析 114
6.5 本章小结 123
第7章 长短期记忆网络 124
7.1 本章概览 124
7.1.1 LSTM 124
7.1.2 遗忘门 126
7.2 输入门和候选单元状态 128
7.3 输出门和当前激活 132
7.4 神经语言翻译 139
7.5 本章小结 150
第8章 自然语言处理前沿 151
8.1 本章概览 151
8.1.1 注意力机制 152
8.1.2 注意力机制模型 153
8.1.3 使用注意力机制的数据标准化 154
8.1.4 编码器 155
8.1.5 解码器 155
8.1.6 注意力机制 155
8.1.7 α的计算 156
8.2 其他架构和发展状况 167
8.2.1 transformer 168
8.2.2 BERT 168
8.2.3 Open AI GPT-2 168
8.3 本章小结 169
第9章 组织中的实际NLP项目工作流 170
9.1 本章概览 170
9.1.1 机器学习产品开发的一般工作流 170
9.1.2 演示工作流 171
9.1.3 研究工作流 171
9.1.4 面向生产的工作流 172
9.2 问题定义 173
9.3 数据采集 173
9.4 谷歌Colab 174
9.5 Flask 180
9.6 部署 182
9.6.1 对Flask网络应用程序进行更改 183
9.6.2 使用Docker将Flask网络应用程序包装到容器中 183
9.6.3 将容器托管在亚马逊网络服务EC2实例上 185
9.6.4 改进 190
9.7 本章小结 190
附录 191

推荐

车牌查询
桂ICP备20004708号-3