[套装书]机器学习算法+对抗机器学习(2册)

作者
安柯·莫特拉 安东尼·D. 约瑟夫 布莱恩·尼尔森 本杰明·I. P. 鲁宾斯坦 J. D. 泰格
丛书名
智能科学与技术丛书
出版社
机械工业出版社
ISBN
9782105171453
简要
简介
内容简介书籍计算机书籍 ---------------------------8080753 - 机器学习算法--------------------------- 本书探索理论计算机科学和机器学习这两个领域能够互相借鉴的知识,以此把它们关联起来。本书介绍机器学习中的重要模型和主要问题,并以一种容易理解的方式介绍该领域的前沿研究成果以及现代算法工具,包括矩量法、张量分解法和凸规划松弛法。本书共8章,内容涵盖非负矩阵分解、主题模型、张量分解、稀疏恢复、稀疏编码、高斯混合模型和矩阵补全等。本书适合理论计算机科学家、机器学习研究人员以及相关专业的学生阅读和学习。 ---------------------------8071725 - 对抗机器学习--------------------------- 本书由机器学习安全领域的学者撰写,针对存在安全威胁的对抗性环境,讨论如何构建健壮的机器学习系统,全面涵盖所涉及的理论和工具。全书分为四部分,分别讨论对抗机器学习的基本概念、诱发型攻击、探索性攻击和未来发展方向。书中介绍了当前最实用的工具,你将学会利用它们来监测系统安全状态并进行数据分析,从而设计出有效的对策来应对新的网络攻击;详细讨论了隐私保护机制和分类器的近似最优规避,在关于垃圾邮件和网络安全的案例研究中,深入分析了传统机器学习算法为何会被成功击破;全面概述了该领域的最新技术以及未来可能的发展方向。本书适合机器学习、计算机安全、网络安全领域的研究人员、技术人员和学生阅读。
目录
[套装书具体书目]
8071725 - 对抗机器学习 - 9787111658924 - 机械工业出版社 - 定价 99
8080753 - 机器学习算法 - 9787111680482 - 机械工业出版社 - 定价 79



---------------------------8080753 - 机器学习算法---------------------------


译者序
前言
第1章引言
第2章非负矩阵分解
21介绍
22代数算法
23稳定性和可分离性
24主题模型
25练习
第3章张量分解:算法
31旋转问题
32张量入门
33Jennrich算法
34矩阵摄动界
35练习
第4章张量分解:应用
41进化树和隐马尔可夫模型
42社区发现
43扩展到混合模型
44独立成分分析
45练习
第5章稀疏恢复
51介绍
52非相干性和不确定性原理
53追踪算法
54Prony方法
55压缩感知
56练习
第6章稀疏编码
61介绍
62不完备情况
63梯度下降
64过完备情况
65练习
第7章高斯混合模型
71介绍
72基于聚类的算法
73密度估计的讨论
74无聚类算法
75单变量算法
76代数几何视图
77练习
第8章矩阵补全
81介绍
82核范数
83量子高尔夫
参考文献
索引



---------------------------8071725 - 对抗机器学习---------------------------


译者序
致谢
符号表
第一部分对抗机器学习概述
第1章引言
11动机
12安全学习的原则性方法
13安全学习年表
14本书内容概述
第2章背景知识及符号说明
21基本表示
22统计机器学习
221数据
222假设空间
223学习模型
224监督学习
225其他学习模式
第3章安全学习框架
31学习阶段分析
32安全分析
321安全目标
322威胁模型
323安全中的机器学习应用探讨
33框架
331分类
332对抗学习博弈
333对抗能力特征
334攻击
335防御
34探索性攻击
341探索性博弈
342探索性完整性攻击
343探索性可用性攻击
344防御探索性攻击
35诱发型攻击
351诱发型博弈
352诱发型完整性攻击
353诱发型可用性攻击
354防御诱发型攻击
36重复学习博弈
37隐私保护学习
371差分隐私
372探索性和诱发型隐私攻击
373随机效用
第二部分关于机器学习的诱发型攻击
第4章攻击一个超球面学习者
41超球面检测器的诱发型攻击
411学习假设
412攻击者假设
413分析方法论
42超球面攻击描述
421取代质心
422攻击的正式描述
423攻击序列的特征
43最优无约束攻击
44对攻击施加时间限制
441可变质量的堆叠块
442替代配方
443最优松弛解
45使用数据替换进行重新训练的攻击
451平均输出和随机输出替换策略
452最近输出替换策略
46受限制的攻击者
461贪婪最佳攻击
462混合数据攻击
463扩展
47总结
第5章可用性攻击案例研究:SpamBayes
51SpamBayes垃圾邮件过滤器
511SpamBayes的训练算法
512SpamBayes的预测
513SpamBayes的模型
52SpamBayes的威胁模型
521攻击者目标
522攻击者知识
523训练模型
524污染假设
53对SpamBayes学习者的\诱发型攻击
531诱发型可用性攻击
532诱发型完整性攻击——伪垃圾邮件
54拒绝负面影响防御
55使用SpamBayes进行实验
551实验方法
552字典攻击结果
553集中攻击结果
554伪垃圾邮件攻击实验
555RONI结果
56总结
第6章完整性攻击案例研究:主成分分析检测器
61PCA方法用于流量异常检测
611流量矩阵和大规模异常
612用于异常检测的子空间方法
62腐蚀PCA子空间
621威胁模型
622无信息垃圾流量选择
623局部信息垃圾流量选择
624全局信息垃圾流量选择
625温水煮青蛙式攻击
63腐蚀抵御检测器
631直觉
632PCAGRID方法
633鲁棒的拉普拉斯阈值
64实证评估
641准备
642识别易受攻击流
643攻击评估
644ANTIDOTE评估
645温水煮青蛙式毒化攻击实证评估
65总结
第三部分关于机器学习的探索性攻击
第7章用于SVM学习的隐私保护机制
71隐私泄露案例研究
711马萨诸塞州员工健康记录
712AOL搜索查询日志
713Netflix奖
714Twitter昵称的去匿名化
715全基因组关联研究
716广告微目标
717经验教训
72问题定义:隐私保护学习
721差分隐私
722可用性
723差分隐私的历史研究方向
73支持向量机:简单介绍
731平移不变核
732算法的稳定性
74基于输出干扰的差分隐私
75基于目标函数干扰的差分隐私
76无限维特征空间
77最优差分隐私的界限
771上界
772下界
78总结
第8章分类器的近似最优规避
81近似最优规避的特征
811对抗成本
812近似最优规避
813搜索的术语
814乘法最优性与加法最优性
815凸诱导性分类器族
82l1成本凸类的规避
821对于凸X+f的IMAC搜索
822对于凸X-f的IMAC学习
83一般lp成本的规避
831凸正集
832凸负集
84总结
841近似最优规避中的开放问题
842规避标准的替代
843现实世界的规避
第四部分对抗机器学习的未来方向
第9章对抗机器学习的挑战
91讨论和开放性问题
911对抗博弈的未探索组件
912防御技术的发展
92回顾开放性问题
93结束语
附录A学习和超几何背景知识
附录B超球面攻击的完整证明
附录CSpamBayes分析
附录D近似最优规避的完整
证明
术语表
参考文献

推荐

车牌查询
桂ICP备20004708号-3