[套装书]深度学习基础教程+深度学习:卷积神经网络从入门到精通(2册)

作者
赵宏 于刚 吴美学 张浩然 屈芳瑜 王鹏 参 李玉鑑 张婷 单传辉 刘兆英
丛书名
人工智能技术丛书
出版社
机械工业出版社
ISBN
9782108119450
简要
简介
内容简介书籍计算机书籍 ---------------------------8082987 - 深度学习基础教程--------------------------- 深度学习是当前的人工智能领域的技术热点。本书面向高等院校理工科专业学生的需求,介绍深度学习相关概念,培养学生研究、利用基于各类深度学习架构的人工智能算法来分析和解决相关专业问题的能力。本书内容包括深度学习概述、人工神经网络基础、卷积神经网络和循环神经网络、生成对抗网络和深度强化学习、计算机视觉以及自然语言处理。本书适合作为高校理工科相关专业深度学习、人工智能相关课程的教材,也适合作为技术人员的参考书或自学读物。 ---------------------------8049903 - 深度学习:卷积神经网络从入门到精通--------------------------- 卷积神经网络是深度学习中为重要的模型,对引领深度学习的井喷式发展起到了不可或缺的作用。本书试图全面介绍卷积神经网络的模型和方法,详细讨论了其现代雏形、突破模型、加深模型、应变模型、跨连模型、区域模型、分割模型、特殊模型和强化模型,后是其成就AlphaGo。为了辅助读者理解有关内容,本书还结合应用案例分析了很多具体模型的代码实现及演示效果。
目录
[套装书具体书目]
8049903 - 深度学习:卷积神经网络从入门到精通 - 9787111602798 - 机械工业出版社 - 定价 79
8082987 - 深度学习基础教程 - 9787111687320 - 机械工业出版社 - 定价 59



---------------------------8082987 - 深度学习基础教程---------------------------


前言
第1章 深度学习概述 1
1.1 深度学习的发展历程 1
1.1.1 深度学习的历史 1
1.1.2 深度学习领域的重要人物 5
1.2 深度学习的关键技术 7
1.2.1 深度学习的机理 7
1.2.2 深度学习的三要素 8
1.2.3 数据的特征 9
1.2.4 深度学习的主要模型 10
1.2.5 深度学习模型的训练过程 11
1.2.6 深度学习模型的学习方式 12
1.2.7 深度学习的常用框架 14
1.3 深度学习网络的发展脉络及应用领域 18
1.3.1 深度学习网络的发展脉络 18
1.3.2 深度学习的应用领域 19
课后习题 21
参考文献 22
第2章 人工神经网络基础 24
2.1 人工神经网络的生物学基础 24
2.1.1 神经元的基本模型 24
2.1.2 突触的结构 26
2.2 人工神经元模型 26
2.2.1 人工神经元的数学模型 26
2.2.2 常见的人工神经元模型 30
2.3 人工神经网络模型 34
2.3.1 神经网络的基本结构 34
2.3.2 神经网络的分类 36
2.4 神经网络的前向传播机制 39
2.5 神经网络的反向传播机制 40
2.6 基于反向传播算法的神经网络设计流程 43
2.7 人工神经网络的参数优化问题 45
2.7.1 神经网络层数的优化问题 45
2.7.2 归一化指数函数softmax 47
2.7.3 学习率 49
2.7.4 欠拟合和过拟合问题 50
课后习题 52
参考文献 53
第3章 卷积神经网络和循环神经网络 54
3.1 卷积神经网络 54
3.1.1 卷积神经网络的基本概念 54
3.1.2 卷积神经网络的结构 58
3.1.3 卷积神经网络的常用架构 65
3.2 循环神经网络 72
3.2.1 循环神经网络的基本概念 72
3.2.2 循环神经网络的应用——语言模型 77
3.2.3 循环神经网络的梯度问题及解决方法 80
3.2.4 循环神经网络的改进 84
课后习题 87
参考文献 89
第4章 生成对抗网络和深度强化学习 92
4.1 生成对抗网络 92
4.1.1 生成对抗网络概述 92
4.1.2 生成对抗网络的基本原理 94
4.1.3 几种改进的生成对抗网络模型 99
4.1.4 生成对抗网络的应用 103
4.2 强化学习 106
4.2.1 强化学习概述 106
4.2.2 强化学习的决策过程 108
4.2.3 Q-Learning算法 111
4.2.4 深度强化学习 112
课后习题 118
参考文献 119
第5章 计算机视觉 121
5.1 计算机视觉概述 121
5.1.1 计算机视觉的历史 122
5.1.2 计算机视觉的挑战与机遇 123
5.1.3 计算机视觉常见的数据集 125
5.1.4 计算机视觉处理的基本流程 130
5.2 图像预处理 131
5.2.1 图像去噪 131
5.2.2 图像归一化 133
5.2.3 图像分割技术 134
5.3 计算机视觉常用的网络结构 136
5.3.1 图像分类常用的深度学习网络结构 136
5.3.2 视频分类常用的深度学习网络结构 140
5.3.3 目标检测常用的深度学习网络结构 144
课后习题 152
参考文献 154
第6章 自然语言处理 156
6.1 自然语言处理概述 156
6.1.1 发展历史 157
6.1.2 自然语言处理的过程 158
6.1.3 基础技术 160
6.1.4 词嵌入算法 162
6.1.5 N-gram语言模型 166
6.1.6 注意力机制 167
6.2 自然语言处理的应用模型 171
6.2.1 文本分类 171
6.2.2 自动文本摘要 175
6.2.3 自动问答系统 178
6.2.4 触发字检测 181
课后习题 182
参考文献 183



---------------------------8049903 - 深度学习:卷积神经网络从入门到精通---------------------------


CONTENTS
目  录
前言
第1章 概述 1
1.1 深度学习的起源和发展 1
1.2 卷积神经网络的形成和演变 4
1.3 卷积神经网络的应用和影响 6
1.4 卷积神经网络的缺陷和视图 9
1.5卷积神经网络的GPU实现和cuDNN库 10
1.6 卷积神经网络的平台和工具 10
1.7 本书的内容结构和案例数据 13
1.7.1 内容结构 13
1.7.2 案例数据 15
第2章 预备知识 22
2.1 激活函数 22
2.2 矩阵运算 23
2.3 导数公式 24
2.4 梯度下降算法 25
2.5 反向传播算法 26
2.5.1 通用反向传播算法 27
2.5.2 逐层反向传播算法 28
2.6 通用逼近定理 31
2.7 内外卷积运算 31
2.8 膨胀卷积运算 32
2.9 上下采样运算 33
2.10 卷积面计算 34
2.11 池化面计算 36
2.12 局部响应归一化 36
2.13 权值偏置初始化 37
2.14 丢失输出 37
2.15 丢失连接 38
2.16 随机梯度下降算法 39
2.17 块归一化 39
2.18 动态规划算法 40
第3章卷积神经网络的现代雏形——LeNet 41
3.1 LeNet的原始模型 41
3.2 LeNet的标准模型 43
3.3 LeNet的学习算法 44
3.4 LeNet的Caffe代码实现及说明 46
3.5 LeNet的手写数字识别案例 54
3.6 LeNet的交通标志识别案例 58
3.6.1交通标志数据集的格式转换 58
3.6.2 交通标志的识别分类 60
3.7 LeNet的交通路网提取案例 63
3.7.1 交通路网的人工标注 64
3.7.2 交通路网的图像块分类 67
3.7.3交通路网的图像块分类LeNet 69
3.7.4交通路网的自动提取代码及说明 71
3.7.5交通路网的自动提取程序运行结果 75
第4章卷积神经网络的突破模型 78
4.1 AlexNet的模型结构 78
4.2AlexNet的Caffe代码实现及说明 82
4.3AlexNet的Caffe大规模图像分类案例及演示效果 95
4.4AlexNet的TensorFlow代码实现及说明 97
4.5AlexNet的TensorFlow大规模图像分类案例及演示效果 103
4.6 AlexNet的改进模型ZFNet 107
第5章卷积神经网络的应变模型 109
5.1 SPPNet的模型结构 109
5.2SPPNet的Caffe代码实现及说明 112
5.3SPPNet的大规模图像分类案例及演示效果 114
第6章卷积神经网络的加深模型 118
6.1结构加深的卷积网络VGGNet 118
6.1.1 VGGNet的模型结构 118
6.1.2VGGNet的TensorFlow代码实现及说明 120
6.1.3VGGNet的物体图像分类案例 129
6.2结构更深的卷积网络GoogLeNet 130
6.2.1 GoogLeNet的模型结构 130
6.2.2GoogLeNet的TensorFlow代码实现及说明 136
6.2.3GoogLeNet的鲜花图像分类案例 149
第7章卷积神经网络的跨连模型 154
7.1 快道网络HighwayNet 154
7.2 残差网络ResNet 155
7.2.1 ResNet的模型结构 155
7.2.2ResNet的Caffe代码实现及说明 157
7.2.3ResNet的大规模图像分类案例 163
7.3 密连网络DenseNet 169
7.3.1 DenseNet的模型结构 169
7.3.2DenseNet的Caffe代码实现及说明 171
7.3.3DenseNet的物体图像分类案例 174
7.4 拼接网络CatNet 178
7.4.1 CatNet的模型结构 178
7.4.2CatNet的Caffe代码实现及说明 179
7.4.3CatNet的人脸图像性别分类案例 183
第8章卷积神经网络的区域模型 190
8.1 区域卷积网络R-CNN 190
8.2快速区域卷积网络Fast R-CNN 191
8.3更快区域卷积网络Faster R-CNN 193
8.3.1Faster R-CNN的模型结构 193
8.3.2Faster R-CNN的TensorFlow代码实现及说明 196
8.3.3Faster R-CNN的图像目标检测案例及演示效果 216
8.4 你只看一次网络YOLO 220
8.4.1 YOLO的模型结构 220
8.4.2YOLO的TensorFlow代码实现及说明 226
8.4.3YOLO的图像目标检测案例及演示效果 239
8.5 单次检测器SSD 242
8.5.1 SSD的模型结构 242
8.5.2SSD的TensorFlow代码实现及说明 245
8.5.3SSD的图像目标检测案例及演示效果 260
第9章卷积神经网络的分割模型 266
9.1 全卷积网络FCN 266
9.1.1 FCN的模型结构 266
9.1.2FCN的Caffe代码实现及说明 269
9.1.3FCN的图像语义和几何分割案例 272
9.2金字塔场景分析网络PSPNet 277
9.2.1 PSPNet的模型结构 277
9.2.2PSPNet的TensorFlow代码实现及说明 282
9.2.3PSPNet的图像语义分割案例及演示效果 291
9.3掩膜区域卷积网络Mask R-CNN 294
9.3.1Mask R-CNN的模型结构 294
9.3.2Mask R-CNN的Keras和TensorFlow代码实现及说明 297
9.3.3Mask R-CNN的图像实例分割案例及演示效果 318
第10章卷积神经网络的特殊模型 325
10.1 孪生网络SiameseNet 325
10.1.1SiameseNet的模型结构 325
10.1.2SiameseNet的Caffe代码实现及说明 326
10.1.3SiameseNet的手写数字验证案例 328
10.2 挤压网络SqueezeNet 331
10.2.1SqueezeNet的模型结构 331
10.2.2SqueezeNet的Caffe代码实现及说明 334
10.2.3SqueezeNet大规模图像分类案例 337
10.3深层卷积生成对抗网络DCGAN 339
10.3.1DCGAN的模型结构 339
10.3.2DCGAN的TensorFlow代码实现及说明 340
10.3.3DCGAN的CelebA人脸图像生成案例 345
10.4 网中网NIN 348
10.4.

推荐

车牌查询
桂ICP备20004708号-3