[套装书]ROS机器人项目开发11例(原书第2版)+ROS机器人编程:原理与应用(2册)

作者
拉姆库玛·甘地那坦 郎坦·约瑟夫 怀亚特·S. 纽曼
丛书名
机器人设计与制作系列
出版社
机械工业出版社
ISBN
9782101201425
简要
简介
内容简介书籍计算机书籍 ---------------------------ROS机器人项目开发11例(原书第2版)--------------------------- 本书涵盖新的ROS发行版中的项目——ROS Melodic Morenia with Ubuntu Bionic(18.04)。从基本原理开始,本书向你介绍了ROS-2,并帮助你了解它与ROS-1的不同之处。你将能够在ROS中建模并构建工业移动机械手臂,并在Gazebo 9中进行模拟。然后,你将了解如何使用状态机处理复杂的机器人应用程序,以及一次处理多个机器人。本书还向你介绍了新的、流行的硬件,如Nvidia的Jetson Nano、华硕修补板和Beaglebone Black,并允许你探索与ROS的接口。 ---------------------------ROS机器人编程:原理与应用--------------------------- 本书共分为六部分。第一部分介绍了如何编写ROS节点和ROS工具,也覆盖了消息、类和服务器。第二部分是用ROS进行模拟和可视化,其中包括坐标转换。第三部分讨论了ROS的感知过程。第四部分介绍了ROS中的移动机器人控制和导航。第五部分介绍了ROS机器人臂的相关知识。第六部分涉及系统集成和更高级别的控制,包括基于感知的移动操作。
目录



---------------------------ROS机器人项目开发11例(原书第2版)---------------------------


译者序
前言
作者简介
第1章 ROS入门 1
1.1 技术要求 2
1.2 ROS概述 2
1.2.1 ROS发行版 3
1.2.2 支持的操作系统 3
1.2.3 支持的机器人及传感器 4
1.2.4 为什么选择ROS 5
1.3 ROS基础 6
1.3.1 文件系统层级 7
1.3.2 计算图层级 7
1.3.3 ROS社区层级 9
1.3.4 ROS中的通信 9
1.4 ROS客户端库 10
1.5 ROS工具 11
1.5.1 ROS的可视化工具RViz 11
1.5.2 rqt_plot 11
1.5.3 rqt_graph 12
1.6 ROS模拟器 13
1.7 在Ubuntu 18.04 LTS上安装ROS Melodic 13
1.8 在VirtualBox上设置ROS 18
1.9 Docker简介 19
1.9.1 为什么选择Docker 20
1.9.2 安装Docker 20
1.10 设置ROS工作空间 23
1.11 ROS在工业界和学术界的机遇 25
1.12 本章小结 25
第2章 ROS-2及其特性简介 26
2.1 技术要求 27
2.2 ROS-2概述 27
2.2.1 ROS-2发行版 28
2.2.2 支持的操作系统 28
2.2.3 支持的机器人及传感器 29
2.2.4 为什么选择ROS-2 29
2.3 ROS-2基础 30
2.3.1 什么是DDS 30
2.3.2 DDS的实现 30
2.3.3 计算图 31
2.3.4 ROS-2社区层级 32
2.3.5 ROS-2中的通信 32
2.3.6 ROS-2的变化 33
2.4 ROS-2客户端库 33
2.5 ROS-2工具 34
2.5.1 RViz2 34
2.5.2 Rqt 36
2.6 安装ROS-2 36
2.6.1 开始安装 37
2.6.2 获取ROS-2源码 38
2.6.3 ROS-1、ROS-2以及共存环境设置 41
2.6.4 运行测试节点 42
2.7 设置ROS-2工作空间 44
2.8 编写ROS-2节点 45
2.8.1 ROS-1代码示例 45
2.8.2 ROS-2代码示例 46
2.8.3 ROS-1发布者节点与ROS-2发布者节点的区别 49
2.9 ROS-1和ROS-2的通信 50
2.10 本章小结 52
第3章 构建工业级移动机械臂 53
3.1 技术要求 54
3.2 常见的移动机械臂 54
3.3 移动机械臂应用场景 55
3.4 移动机械臂构建入门 56
3.4.1 单位及坐标系 57
3.4.2 Gazebo及ROS机器人模型格式设定 57
3.5 机器人底座构建 58
3.5.1 机器人底座需求 58
3.5.2 软件参数 60
3.5.3 机器人底座建模 60
3.5.4 机器人底座模拟 64
3.5.5 机器人底座测试 68
3.6 机械臂构建 70
3.6.1 机械臂需求 71
3.6.2 软件参数 72
3.6.3 机械臂建模 72
3.6.4 机械臂模拟 74
3.6.5 机械臂测试 77
3.7 系统集成 78
3.7.1 移动机械臂建模 78
3.7.2 移动机械臂模拟与测试 79
3.8 本章小结 80
第4章 基于状态机的复杂机器人任务处理 81
4.1 技术要求 81
4.2 ROS动作机制简介 82
4.2.1 服务器–客户端结构概述 82
4.2.2 actionlib示例:机械臂客户端 83
4.2.3 基于actionlib的服务器–客户端示例:电池模拟器 85
4.3 服务员机器人应用示例 90
4.4 状态机简介 92
4.5 SMACH简介 93
4.6 SMACH入门 96
4.6.1 SMACH-ROS的安装与使用 96
4.6.2 简单示例 96
4.6.3 餐厅机器人应用示例 98
4.7 本章小结 102
第5章 构建工业级应用程序 103
5.1 技术要求 103
5.2 应用案例:机器人送货上门 104
5.3 机器人底座智能化 106
5.3.1 添加激光扫描传感器 106
5.3.2 配置导航栈 108
5.3.3 环境地图构建 110
5.3.4 机器人底座定位 111
5.4 机械臂智能化 111
5.4.1 Moveit简介 112
5.4.2 安装与配置Moveit 113
5.4.3 通过Moveit控制机械臂 117
5.5 应用程序模拟 120
5.5.1 环境地图构建与保存 120
5.5.2 选择目标点 120
5.5.3 添加目标点 121
5.5.4 状态机构建 121
5.6 机器人改进 121
5.7 本章小结 122
第6章 多机器人协同 123
6.1 技术要求 123
6.2 集群机器人基本概念 124
6.3 集群机器人分类 125
6.4 ROS中的多机器人通信 125
6.4.1 单个roscore和公共网络 126
6.4.2 群组/名称空间的使用 127
6.4.3 基于群组/名称空间的多机器人系统构建示例 128
6.5 多master概念简介 131
6.5.1 multimaster_fkie功能包简介 132
6.5.2 安装multimaster_fkie功能包 133
6.5.3 设置multimaster_fkie功能包 133
6.6 多机器人应用示例 136
6.7 本章小结 138
第7章 嵌入式平台上的ROS应用及其控制 139
7.1 技术要求 139
7.2 嵌入式板基础知识 140
7.2.1 重要概念介绍 141
7.2.2 机器人领域微控制器和微处理器的区别 142
7.2.3 板卡选型步骤 142
7.3 微控制器板简介 143
7.3.1 Arduino Mega 143
7.3.2 STM32 144
7.3.3 ESP8266 145
7.3.4 ROS支持的嵌入式板 146
7.3.5 对比表格 147
7.4 单板计算机简介 147
7.4.1 CPU板 148
7.4.2 GPU板 151
7.5 Debian与Ubuntu 152
7.6 在Tinkerboard S平台上设置操作系统 153
7.6.1 基础需求 153
7.6.2 安装Tinkerboard Debian操作系统 153
7.6.3 安装Armbian和ROS 154
7.6.4 使用可用的ROS镜像安装 156
7.7 在BeagleBone Black平台上设置ROS 156
7.7.1 基础需求 156
7.7.2 安装Debian 操作系统 157
7.7.3 安装Ubuntu和ROS 158
7.8 在Raspberry Pi 3/4平台上设置ROS 159
7.8.1 基础需求 159
7.8.2 安装Raspbian和ROS 159
7.8.3 安装Ubuntu和ROS 160
7.9 在Jetson Nano平台上设置ROS 161
7.10 通过ROS控制GPIO 161
7.10.1 Tinkerboard S 162
7.10.2 BeagleBone Black 163
7.10.3 Raspberry Pi 3/4 164
7.10.4 Jetson Nano 165
7.11 嵌入式板基准测试 166
7.12 Alexa入门及连接ROS 168
7.12.1 Alexa 技能构建前提条件 168
7.12.2 创建Alexa技能 169
7.13 本章小结 173
第8章 强化学习与机器人学 174
8.1 技术要求 174
8.2 机器学习概述 175
8.2.1 监督学习 175
8.2.2 无监督学习 175
8.2.3 强化学习 176
8.3 理解强化学习 176
8.3.1 探索与开发 177
8.3.2 强化学习公式 177
8.3.3 强化学习平台 178
8.3.4 机器人领域的强化学习应用 179
8.4 马尔可夫决策过程与贝尔曼方程 179
8.5 强化学习算法 181
8.5.1 出租车问题应用示例 181
8.5.2 TD预测 182
8.5.3 TD控制 183
8.6 ROS中的强化学习功能包 189
8.6.1 gym-gazebo 189
8.6.2 gym-gazebo2 194
8.7 本章小结 196
第9章 ROS下基于TensorFlow的深度学习 197
9.1 技术要求 197
9.2 深度学习及其应用简介 198
9.3 机器人领域的深度学习 198
9.4 深度学习库 199
9.5 TensorFlow入门 200
9.5.1 在Ubuntu 18.04 LTS上安装TensorFlow 200
9.5.2 TensorFlow概念 202
9.5.3 在TensorFlow下编写第一行代码 204
9.6 ROS下基于TensorFlow的图像识别 206
9.6.1 基础需求 207
9.6.2 ROS图像识别节点 207
9.7 scikit-learn简介 210
9.8 SVM及其在机器人领域的应用简介 211
9.9 本章小结 214
第10章 ROS下的自动驾驶汽车构建 215
10.1 技术要求 215
10.2 自动驾驶汽车入门 216
10.3 典型自动驾驶汽车基本组件 218
10.3.1 GPS、IMU和车轮编码器 218
10.3.2 摄像头 219
10.3.3 超声波传感器 219
10.3.4 LIDAR与RADAR 219
10.3.5 自动驾驶汽车的软件模块体系结构 221
10.4 ROS下的自动驾驶汽车模拟与交互 222
10.4.1 Velodyne LIDAR模拟 223
10.4.2 ROS下的Velodyne传感器接口 224
10.4.3 激光扫描仪模拟 225
10.4.4 模拟代码扩展 226
10.4.5 ROS下的激光扫描仪接口 227
10.4.6 Gazebo下的立体与单目摄像头模拟 228
10.4.7 ROS下的摄像头接口 229
10.4.8 Gazebo下的GPS模拟 230
10.4.9 ROS下的GPS接口 231
10.4.10 Gazebo下的IMU模拟 231
10.4.11 ROS下的IMU接口 233
10.4.12 Gazebo下的超声波传感器模拟 233
10.4.13 低成本LIDAR传感器 235
10.5 Gazebo下带传感器的自动驾驶汽车模拟 236
10.6 ROS下的DBW汽车接口 241
10.6.1 功能包安装 241
10.6.2 自动驾驶汽车及传感器数据可视化 241
10.6.3 基于ROS与DBW通信 243
10.7 Udacity开源自动驾驶汽车项目简介 243
10.7.1 Udacity的开源自动驾驶汽车模拟器 244
10.7.2 MATLAB ADAS工具箱 246
10.8 本章小结 246
第11章 基于VR头盔和Leap Motion的机器人遥操作 247
11.1 技术要求 248
11.2 VR头盔和Leap Motion传感器入门 248
11.3 项目设计和实施 250
11.4 在Ubuntu 14.04.5上安装Leap Motion SDK 251
11.4.1 可视化Leap Motion控制器数据 252
11.4.2 使用Leap Motion可视化工具 252
11.4.3 安装用于Leap Motion控制器的ROS驱动程序 253
11.5 RViz中Leap Motion数据的可视化 255
11.6 使用Leap Motion控制器创建遥操作节点 256
11.7 构建ROS-VR Android应用程序 258
11.8 ROS-VR应用程序的使用及与Gazebo的交互 260
11.9 VR下的TurtleBot模拟 262
11.9.1 安装TurtleBot模拟器 262
11.9.2 在VR中控制TurtleBot 262
11.10 ROS-VR应用程序故障排除 263
11.11 ROS-VR应用与Leap Motion遥操作功能集成 264
11.12 本章小结 265
第12章 基于ROS、Open CV和Dynamixel伺服系统的人脸识别与跟踪 266
12.1 技术要求 266
12.2 项目概述 267
12.3 硬件和软件基础需求 267
12.4 使用RoboPlus配置Dynamixel伺服系统 271
12.5 Dynamixel与ROS连接 275
12.6 创建人脸跟踪器ROS功能包 276
12.7 使用人脸跟踪ROS功能包 278
12.7.1 理解人脸跟踪器代码 279
12.7.2 理解CMakeLists.txt 283
12.7.3 track.yaml文件 284
12.7.4 启动文件 284
12.7.5 运行人脸跟踪器节点 285
12.7.6 face_tracker_control功能包 286
12.7.7 平移控制器配置文件 287
12.7.8 伺服系统参数配置文件 287
12.7.9 人脸跟踪控制器节点 288
12.7.10 创建CMakeLists.txt 289
12.7.11 测试人脸跟踪器控制功能包 290
12.7.12 节点集成 291
12.7.13 固定支架并设置电路 291
12.7.14 最终运行 292
12.8 本章小结 292


---------------------------ROS机器人编程:原理与应用---------------------------


译者序
前言
第一部分 ROS基础 / 1
第1章 概述:ROS工具和节点 / 2
1.1 ROS基础概念 / 2
1.2 编写ROS节点 / 5
1.2.1 创建ROS程序包 / 5
1.2.2 编写一个最小的ROS发布器 / 8
1.2.3 编译ROS节点 / 11
1.2.4 运行ROS节点 / 12
1.2.5 检查运行中的最小发布器节点 / 13
1.2.6 规划节点时间 / 15
1.2.7 编写一个最小ROS订阅器 / 17
1.2.8 编译和运行最小订阅器 / 19
1.2.9 总结最小订阅器和发布器节点 / 21
1.3 更多的ROS工具:catkin_simple、roslaunch、rqt_console和rosbag / 21
1.3.1 用catkin_simple简化CMakeLists.txt / 21
1.3.2 自动启动多个节点 / 23
1.3.3 在ROS控制台观察输出 / 25
1.3.4 使用rosbag记录并回放数据 / 26
1.4 最小仿真器和控制器示例 / 28
1.5 小结 / 32
第2章 消息、类和服务器 / 33
2.1 定义自定义消息 / 33
2.1.1 定义一条自定义消息 / 34
2.1.2 定义一条变长的消息 / 38
2.2 ROS服务介绍 / 43
2.2.1 服务消息 / 43
2.2.2 ROS服务节点 / 45
2.2.3 与ROS服务手动交互 / 47
2.2.4 ROS服务客户端示例 / 48
2.2.5 运行服务和客户端示例 / 50
2.3 在ROS中使用C++类 / 51
2.4 在ROS中创建库模块 / 56
2.5 动作服务器和动作客户端介绍 / 61
2.5.1 创建动作服务器包 / 62
2.5.2 定义自定义动作服务器消息 / 62
2.5.3 设计动作客户端 / 68
2.5.4 运行示例代码 / 71
2.6 参数服务器介绍 / 80
2.7 小结 / 84
第二部分 ROS中的仿真和可视化 / 85
第3章 ROS中的仿真 / 86
3.1 简单的2维机器人仿真器 / 86
3.2 动力学仿真建模 / 93
3.3 统一的机器人描述格式 / 95
3.3.1 运动学模型 / 95
3.3.2 视觉模型 / 98
3.3.3 动力学模型 / 99
3.3.4 碰撞模型 / 102
3.4 Gazebo介绍 / 104
3.5 最小关节控制器 / 112
3.6 使用Gazebo插件进行关节伺服控制 / 118
3.7 构建移动机器人模型 / 124
3.8 仿真移动机器人模型 / 132
3.9 组合机器人模型 / 136
3.10 小结 / 139
第4章 ROS中的坐标变换 / 141
4.1 ROS中的坐标变换简介 / 141
4.2 转换侦听器 / 149
4.3 使用Eigen库 / 156
4.4 转换ROS数据类型 / 161
4.5 小结 / 163
第5章 ROS中的感知与可视化 / 164
5.1 rviz中的标记物和交互式标记物 / 168
5.1.1 rviz中的标记物 / 168
5.1.2 三轴显示示例 / 172
5.1.3 rviz中的交互式标记物 / 176
5.2 在rviz中显示传感器值 / 183
5.2.1 仿真和显示激光雷达 / 183
5.2.2 仿真和显示彩色相机数据 / 189
5.2.3 仿真和显示深度相机数据 / 193
5.2.4 rviz中点的选择 / 198
5.3 小结 / 201
第三部分 ROS中的感知处理 / 203
第6章 在ROS中使用相机 / 204
6.1 相机坐标系下的投影变换 / 204
6.2 内置相机标定 / 206
6.3 标定立体相机内参 / 211
6.4 在ROS中使用OpenCV / 217
6.4.1 OpenCV示例:寻找彩色像素 / 218
6.4.2 OpenCV示例:查找边缘 / 223
6.5 小结 / 224
第7章 深度图像与点云信息 / 225
7.1 从扫描LIDAR中获取深度信息 / 225
7.2 立体相机的深度信息 / 230
7.3 深度相机 / 236
7.4 小结 / 237
第8章 点云数据处理 / 238
8.1 简单的点云显示节点 / 238
8.2 从磁盘加载和显示点云图像 / 244
8.3 将发布的点云图像保存到磁盘 / 246
8.4 用PCL方法解释点云图像 / 248
8.5 物体查找器 / 257
8.6 小结 / 261
第四部分 ROS中的移动机器人 / 263
第9章 移动机器人的运动控制 / 264
9.1 生成期望状态 / 264
9.1.1 从路径到轨迹 / 264
9.1.2 轨迹构建器库 / 268
9.1.3 开环控制 / 273
9.1.4 发布期望状态 / 274
9.2 机器人状态估计 / 282
9.2.1 从Gazebo获得模型状态 / 282
9.2.2 里程计 / 286
9.2.3 混合里程计、GPS和惯性传感器 / 292
9.2.4 混合里程计和LIDAR / 297
9.3 差分驱动转向算法 / 302
9.3.1 机器人运动模型 / 303
9.3.2 线性机器人的线性转向 / 304
9.3.3 非线性机器人的线性转向 / 306
9.3.4 非线性机器人的非线性转向 / 308
9.3.5 仿真非线性转向算法 / 309
9.4 相对于地图坐标系的转向 / 312
9.5 小结 / 317
第10章 移动机器人导航 / 318
10.1 构建地图 / 318
10.2 路径规划 / 323
10.3 move_base客户端示例 / 328
10.4 修改导航栈 / 331
10.5 小结 / 335
第五部分 ROS中的机械臂 / 337
第11章 底层控制 / 338
11.1 单自由度移动关节机器人模型 / 338
11.2 位置控制器示例 / 339
11.3 速度控制器示例 / 342
11.4 力控制器示例 / 344
11.5 机械臂的轨迹消息 / 349
11.6 7自由度臂的轨迹插值动作服务器 / 353
11.7 小结 / 354
第12章 机械臂运动学 / 355
12.1 正向运动学 / 356
12.2 逆向运动学 / 360
12.3 小结 / 365
第13章 手臂运动规划 / 366
13.1 笛卡儿运动规划 / 367
13.2 关节空间规划的动态规划 / 368
13.3 笛卡儿运动动作服务器 / 372
13.4 小结 / 376
第14章 Baxter仿真器进行手臂控制 / 377
14.1 运行Baxter仿真器 / 377
14.2 Baxter关节和主题 / 379
14.3 Baxter夹具 / 382
14.4 头盘控制 / 385
14.5 指挥Baxter关节 / 387
14.6 使用ROS关节轨迹控制器 / 390
14.7 关节空间记录和回放节点 / 391
14.8 Baxter运动学 / 397
14.9 Baxter笛卡儿运动 / 399
14.10 小结 / 404
第15章 object-grabber包 / 405
15.1 object-grabber代码组织 / 405
15.2 对象操作查询服务 / 407
15.3 通用夹具服务 / 410
15.4 object-grabber动作服务器 / 412
15.5 object-grabber动作客户端示例 / 415
15.6 小结 / 425
第六部分 系统集成与高级控制 / 427
第16章 基于感知的操作 / 428
16.1 外部相机标定 / 428
16.2 综合感知和操作 / 431
16.3 小结 / 440
第17章 移动操作 / 441
17.1 移动机械手模型 / 441
17.2 移动操作 / 442
17.3 小结 / 446
第18章 总结 / 447
参考文献 / 449

推荐

车牌查询
桂ICP备20004708号-3