[套装书]蜂窝物联网:从大规模商业部署到5G关键应用(原书第2版)+5G NR物理层技术详解:原理、模型和组件(2册)

作者
奥洛夫·利贝格 莫滕·桑德伯格 王怡彬 约翰·伯格曼 约阿希姆·萨克斯 古斯塔夫·维克 阿里·扎伊迪 弗雷德里克·阿斯利 乔纳斯·梅德博 乌尔夫·古斯塔夫松 朱塞佩·杜里西 陈晓明
丛书名
现代通信网络技术丛书
出版社
机械工业出版社
ISBN
9782104011050
简要
简介
内容简介书籍通信书籍 ---------------------------8079727 - 蜂窝物联网:从大规模商业部署到5G关键应用(原书第2版)--------------------------- 本书为读者展示了3GPP标准组织和MFA联盟为开发蜂窝物联网系统而进行的近期工作内容。同时揭示了作者超越技术标准的洞察力,成为无线领域中工程师和决策者的必备选择。 本书特色: 介绍大规模机器类通信(mMTC)用例来连接数十亿超低复杂度设备。 介绍超可靠低时延通信(URLLC)系统服务的关键机器类通信(cMTC)用例来满足严格的时延和可靠性需求。 面向基于2G,4G和5G的授权和非授权频谱技术以及描述如何设计这些技术来定义蜂窝物联网。 EC-GSM-IoT,LTE-M,NB-IoT,LTE URLLC和NR URLLC,以及这些蜂窝物联网技术如何支持mMTC和cMTC用例。 介绍为物联网提供连接性的总体竞争环境,其中包括在非授权频段上颇具前景的技术。 5G性能需求和如何通过蜂窝物联网技术来满足这些需求,以及不同技术性能的比较。 ---------------------------8062301 - 5G NR物理层技术详解:原理、模型和组件--------------------------- 本书详细阐述5G新的无线接入技术—5G NR物理层技术的基本设计原理、模型和组件,其中物理层模型包括针对5G NR(max到100 GHz)全频段范围的无线电波传播和硬件损伤。物理层技术包括灵活的多载波波形、先进的多天线解决方案,以及针对5G及以后技术的各种服务、部署和频率的信道编码机制。包括一个基于MATLAB的链路级仿真器以探索各种设计选项。本书主要内容包括: . NR物理层帧结构 传播和信道建模 硬件损伤的数学建模 NR波形设计的关键性能指标 NR参数集设计 NR多天线传输技术和波束赋形功能 NR信道编码 NR开源仿真器结构
目录
[套装书具体书目]
8062301 - 5G NR物理层技术详解:原理、模型和组件 - 9787111631873 - 机械工业出版社 - 定价 139
8079727 - 蜂窝物联网:从大规模商业部署到5G关键应用(原书第2版) - 9787111677239 - 机械工业出版社 - 定价 149



---------------------------8079727 - 蜂窝物联网:从大规模商业部署到5G关键应用(原书第2版)---------------------------


推荐序
译者序
前言
致谢
作者简介
第1章 物联网 1
1.1 简介 1
1.2 物联网通信技术 2
1.2.1 蜂窝物联网 3
1.2.2 非授权频谱技术 5
1.3 本书概述 6
第2章 全球蜂窝物联网标准 8
2.1 3GPP 8
2.2 蜂窝系统架构 10
2.2.1 网络架构 10
2.2.2 无线协议架构 12
2.3 从机器类通信到蜂窝物联网 14
2.3.1 接入级别和过载控制 14
2.3.2 小数据传输 16
2.3.3 设备节能 17
2.3.4 基于LTE的低成本MTC设备研究 21
2.3.5 超低复杂度和低吞吐量物联网的蜂窝系统支持研究 23
2.3.6 LTE时延降低技术研究 24
2.4 5G演进 24
2.4.1 IMT-2020 24
2.4.2 3GPP 5G 25
2.5 MFA标准组织 31
第3章 LTE-M 34
3.1 背景 34
3.1.1 3GPP标准 34
3.1.2 无线接入设计原则 36
3.2 物理层 39
3.2.1 物理资源 39
3.2.2 传输方案 40
3.2.3 设备类型和能力 44
3.2.4 下行物理层信道和信号 47
3.2.5 上行物理层信道和信号 65
3.3 空闲模式和连接模式过程 76
3.3.1 空闲模式过程 76
3.3.2 连接模式过程 91
3.3.3 空闲模式与连接模式的共同过程 105
3.4 NR与LTE-M共存 112
第4章 LTE-M性能 118
4.1 性能目标 118
4.2 覆盖 119
4.3 数据速率 121
4.3.1 下行数据速率 121
4.3.2 上行数据速率 123
4.4 时延 124
4.5 电池寿命 127
4.6 容量 128
4.7 设备复杂度 131
第5章 NB-IoT 134
5.1 背景 134
5.1.1 3GPP标准 134
5.1.2 无线接入设计原则 136
5.2 物理层 142
5.2.1 物理资源 142
5.2.2 传输方案 147
5.2.3 设备类型和能力 149
5.2.4 下行物理信道和信号 150
5.2.5 上行物理信道和信号 168
5.2.6 基带信号的生成 182
5.2.7 传输间隙 185
5.2.8 TDD 187
5.3 空闲模式和连接模式过程 193
5.3.1 空闲模式过程 193
5.3.2 连接模式过程 213
5.4 NR与NB-IoT共存 229
5.4.1 NR和NB-IoT为相邻载波 232
5.4.2 NB-IoT在NR的保护频段内 233
5.4.3 NR资源块内部署NB-IoT 234
第6章 NB-IoT性能 237
6.1 性能目标 237
6.2 覆盖和数据速率 238
6.2.1 评估假设 238
6.2.2 下行覆盖性能 241
6.2.3 上行覆盖性能 246
6.3 峰值数据速率 249
6.3.1 Release 13 Cat-NB1设备 249
6.3.2 Cat-NB2设备配置一个HARQ进程 251
6.3.3 设备配置两个同时活跃的HARQ进程 252
6.4 时延 253
6.4.1 评估假设 253
6.4.2 时延性能 255
6.5 电池寿命 255
6.5.1 评估假设 255
6.5.2 电池寿命性能 257
6.6 容量 257
6.6.1 评估假设 258
6.6.2 容量性能 258
6.6.3 时延性能 260
6.7 定位 261
6.8 设备复杂度 262
6.9 NB-IoT符合5G性能需求 263
6.9.1 5G mMTC评估假设的差异 264
6.9.2 5G mMTC性能评估 264
第7章 LTE URLLC 268
7.1 背景 268
7.2 物理层 269
7.2.1 无线接入设计原则 269
7.2.2 物理资源 270
7.2.3 下行物理信道和信号 272
7.2.4 上行物理信道和信号 287
7.2.5 时间提前量和处理时间 296
7.3 空闲模式和连接模式过程 299
7.3.1 空闲模式过程 299
7.3.2 连接模式过程 300
第8章 LTE URLLC性能 315
8.1 性能目标 315
8.1.1 用户面时延 315
8.1.2 控制面时延 316
8.1.3 可靠性 316
8.2 仿真框架 316
8.3 评估 318
8.3.1 用户面时延 318
8.3.2 控制面时延 321
8.3.3 可靠性 322
第9章 NR URLLC 328
9.1 背景 328
9.1.1 5G系统 328
9.1.2 URLLC 329
9.1.3 NR—LTE的继承者 329
9.1.4 在当前网中引入NR URLLC 330
9.1.5 无线接入设计原则 331
9.2 物理层 333
9.2.1 频段 333
9.2.2 物理层参数集 333
9.2.3 传输方案 335
9.2.4 下行物理信道和信号 342
9.2.5 上行物理信道和信号 352
9.3 空闲模式和连接模式过程 359
9.3.1 NR协议栈 359
9.3.2 空闲模式过程 360
9.3.3 连接模式过程 361
第10章 NR URLLC性能 369
10.1 性能目标 369
10.1.1 用户面时延 369
10.1.2 控制面时延 370
10.1.3 可靠性 370
10.2 评估 370
10.2.1 时延 370
10.2.2 可靠性 377
10.2.3 频谱效率 387
10.3 服务覆盖 389
10.3.1 广域服务举例:配电站保护 389
10.3.2 区域服务举例:工厂自动化潜力 393
第11章 无人机的LTE连接性增强 399
11.1 性能目标 399
11.2 传播信道特性 400
11.3 挑战 403
11.4 3GPP Release 15中引入的LTE增强 405
11.4.1 干扰和飞行模式检测 405
11.4.2 用于移动性增强的飞行路径信息 406
11.4.3 基于订阅的UAV识别 406
11.4.4 上行功率控制增强 407
11.4.5 UE能力指示 408
第12章 物联网技术选择 409
12.1 蜂窝物联网与非蜂窝物联网 409
12.2 蜂窝物联网技术选择 411
12.2.1 大规模物联网的蜂窝技术 411
12.2.2 关键物联网的蜂窝技术 418
12.3 选择哪种蜂窝物联网技术 421
12.3.1 移动网络运营商的观点 421
12.3.2 物联网服务提供商的观点 424
第13章 物联网的技术驱动力 426
13.1 设备、计算和输入/输出技术 427
13.2 通信技术 427
13.3 物联网中的互联网技术 428
13.3.1 一般功能 428
13.3.2 高级服务功能和算法 434
13.4 工业物联网 436
第14章 5G与未来 444
附录A EC-GSM-IoT(在线)
附录B EC-GSM-IoT性能(在线)
附录C 非授权频谱的物联网技术(在线)
附录D MulteFire联盟物联网技术(在线)
技术缩略语表 448



---------------------------8062301 - 5G NR物理层技术详解:原理、模型和组件---------------------------


推荐序一
推荐序二
译者序
致谢
第1章 绪论:5G无线接入 1
1.1 移动通信的演进 2
1.2 5G新的无线接入技术 3
1.3 5G NR全景视图 4
1.3.1 5G标准化 4
1.3.2 5G频谱6
1.3.3 5G用例9
1.3.4 5G外场试验9
1.3.5 5G商用部署13
1.4 本书预览 15
参考文献 17
第2章 NR物理层概述19
2.1 无线协议架构 20
2.2 NR物理层:关键技术 21
2.2.1 调制 21
2.2.2 波形 21
2.2.3 多天线 22
2.2.4 信道编码 23
2.3 物理时频资源 23
2.4 物理信道 25
2.5 物理信号 25
2.6 双工机制 27
2.7 帧结构 28
2.8 物理层过程和测量 30
2.9 物理层的挑战 30
2.9.1 传播相关的挑战 30
2.9.2 硬件相关的挑战 31
参考文献 32
第3章 传播和信道建模 33
3.1 传播的基本原理 33
3.1.1 电磁波 34
3.1.2 自由空间传播 34
3.1.3 散射和吸收 37
3.2 传播信道特性 37
3.2.1 频率–时延域 39
3.2.2 多普勒–时域 42
3.2.3 方向域 44
3.3 试验信道特性 45
3.3.1 测量技术 45
3.3.2 分析方法 47
3.3.3 传输损耗测量 51
3.3.4 时延域测量 56
3.3.5 方向域测量 59
3.4 信道建模 68
3.4.1 5G随机信道模型68
3.4.2 基于几何的建模 75
3.5 总结和展望 76
参考文献 77
第4章 硬件损伤的数学建模 79
4.1 射频功率放大器 80
4.1.1 伏尔特拉级数 81
4.1.2 伏尔特拉级数的常见子集 82
4.1.3 全局和局部基函数 84
4.1.4 试验模型验证 85
4.1.5 正交基函数 88
4.1.6 多天线环境及互耦 90
4.2 振荡器相位噪声 94
4.2.1 相位噪声功率谱和Leeson公式 94
4.2.2 相位噪声建模:自激振荡器 94
4.2.3 相位噪声建模:锁相环 95
4.3 数据转换器 97
4.3.1 量化噪声的建模 97
4.4 统计建模 98
4.4.1 Bussgang定理和系统模型 98
4.5 功率放大器的随机建模 99
4.6 振荡器相位噪声 100
4.7 数据转换器的随机建模 100
4.8 模型的串联和仿真 101
4.8.1 信号与干扰和噪声比 102
4.8.2 仿真 102
4.8.3 仿真结果 104
参考文献 106
第5章 多载波波形 107
5.1 多载波波形概述 108
5.1.1 正交性原理 108
5.1.2 基于OFDM的波形 111
5.1.3 基于滤波器组的波形 117
5.2 单载波DFTS-OFDM 126
5.3 5G NR波形设计要求 128
5.4 NR波形设计的关键性能指标 129
5.5 NR波形对比 131
5.5.1 频率局部化 132
5.5.2 功率效率 134
5.5.3 时变衰落信道 135
5.5.4 基带复杂度 135
5.5.5 相位噪声鲁棒性对比 137
参考文献 142
第6章 NR的波形144
6.1 OFDM对于NR的适用性 144
6.2 NR OFDM的可扩展性 147
6.2.1 为什么选择15 kHz作为参数集基线 150
6.2.2 为什么选择15×2n kHz作为参数集缩放比例 150
6.3 OFDM参数集的实现 151
6.3.1 相位噪声 152
6.3.2 小区大小、业务时延及移动性 153
6.3.3 业务复用 157
6.3.4 频谱限制 157
6.3.5 保护频带的考虑 159
6.3.6 实现因素 162
6.4 改善NR波形的功率效率 162
6.4.1 有失真的技术 164
6.4.2 无失真的技术 165
6.5 同步误差的影响 167
6.5.1 定时偏移的影响 167
6.5.2 载波频率偏移的影响 169
6.5.3 采样频率偏移 170
6.6 损伤抑制 171
6.6.1 相位噪声抑制机制 171
6.6.2 CFO和SFO抑制174
参考文献 179
第7章 多天线技术 180
7.1 多天线技术在NR中的作用 181
7.1.1 低频 181
7.1.2 高频 181
7.2 多天线基本原理 183
7.2.1 波束赋形、预编码和分集 183
7.2.2 空间复用 188
7.2.3 天线阵列架构 194
7.2.4 UE天线200
7.2.5 天线端口和QCL 201
7.2.6 CSI的获取 202
7.2.7 大规模MIMO 207
7.3 NR中多天线技术 208
7.3.1 获取CSI 209
7.3.2 下行MIMO传输 212
7.3.3 上行MIMO传输 213
7.3.4 波束管理 215
7.4 试验结果 222
7.4.1 波束赋形增益 222
7.4.2 波束跟踪 224
7.4.3 系统仿真 225
参考文献 227
第8章 信道编码 229
8.1 前向纠错的基础限制 230
8.1.1 二进制-AWGN信道 230
8.1.2 二进制-AWGN信道的编码机制230
8.1.3 性能指标 230
8.2 二进制-AWGN信道的FEC机制 234
8.2.1 简介 234
8.2.2 一些定义 234
8.2.3 LDPC码 236
8.2.4 极化码 239
8.2.5 较短码块长度的其他编码机制 244
8.3 衰落信道的编码机制 247
8.3.1 SISO的情况247
8.3.2 MIMO的情况 249
参考文献 251
第9章 仿真器 253
9.1 仿真器概览 254
9.2 功能模块 254
9.2.1 信道模型 254
9.2.2 功放模型 255
9.2.3 相位噪声模型 255
9.2.4 同步 257
9.2.5 信道估计和均衡 257
9.3 波形 257
9.3.1 CP-OFDM 257
9.3.2 W-OFDM 258
9.3.3 UF-OFDM 258
9.3.4 FBMC-OQAM 258
9.3.5 FBMC-QAM 259
9.4 仿真练习 259
9.4.1 频谱再生 259
9.4.2 CFO损伤 261
9.4.3 PN损伤263
9.4.4 衰落信道的损伤 265
参考文献 266
缩略语表 268

推荐

车牌查询
桂ICP备20004708号-3