[套装书]Java多线程编程核心技术 第3版+Java高并发编程详解:多线程与架构设计(2册)

作者
高洪岩 等
丛书名
Java核心技术系列
出版社
机械工业出版社
ISBN
9782112291640
简要
简介
内容简介书籍计算机书籍 ---------------------------8085122 - Java多线程编程核心技术 第3版--------------------------- 本书作为讲解Java多线程技术的教程,主要介绍非常核心并常用的技术点,比如解决线程Thread的停止,线程对象Thread的暂停,线程的优先级,synchronized关键字的使用,以及使用它解决非线程安全的问题。使用volatile关键字解决变量可见性问题,使用wait()及notify()方法实现等待通知模式,还有使用ThreadLocal类进行隔离变量,Lock锁对象的使用,包含Condition类实现生产者-消费者模式,深入讲解了Condition类在使用上的细节。还包括对Lock锁对象中的常见API进行细化讲解,ReentrantReadWriteLock读写锁的使用等,Timer定时器类的使用。多线程实现单例模式时完整的解决步骤,以及多线程异常的处理等常见Java多线程解决方案。并发集合框架的使用,以及线程池技术点的使用。 ---------------------------8010626 - Java高并发编程详解:多线程与架构设计--------------------------- 本书主要包含四个部分: 部分主要阐述Thread的基础知识,详细介绍线程的API使用、线程安全、线程间数据通信,以及如何保护共享资源等内容,它是深入学习多线程内容的基础。 第二部分引入了ClassLoader,这是因为ClassLoader与线程不无关系,我们可以通过synchronized关键字,或者Lock等显式锁的方式在代码的编写阶段对共享资源进行数据一致性保护,那么一个Class在完成初始化的整个过程到后在方法区(JDK8 以后在元数据空间)其数据结构是怎样确保数据一致性的呢?这就需要对ClassLoader有一个比较全面的认识和了解。 第三部分详细、深入地介绍volatile关键字的语义,volatile关键字在Java中非常重要,可以说它奠定了Java核心并发包的高效运行,在这一部分中,我们通过实例展示了如何使用volatile关键字以及非常详细地介绍了Java内存模型等知识。 本书的第四部分,站在程序架构设计的角度深入讲解了如何设计高效灵活的多线程应用程序,这一部分长达15个章节,其重要程度可见一斑。
目录
[套装书具体书目]
8010626 - Java高并发编程详解:多线程与架构设计 - 9787111599937 - 机械工业出版社 - 定价 89
8085122 - Java多线程编程核心技术 第3版 - 9787111698586 - 机械工业出版社 - 定价 129



---------------------------8085122 - Java多线程编程核心技术 第3版---------------------------


前 言
第1章 Java多线程技能 1
1.1 进程和线程的定义及多线程的优点 1
1.2 使用多线程 5
1.2.1 继承Thread类 6
1.2.2 使用常见的3个命令分析线程的信息 8
1.2.3 线程随机性的展现 10
1.2.4 执行start()的顺序不代表执行run()的顺序 12
1.2.5 实现Runnable接口 14
1.2.6 使用Runnable接口实现多线程的优点 15
1.2.7 public Thread(Runnable target)中的target参数 16
1.2.8 实例变量共享导致的“非线程安全”问题与相应的解决方案 18
1.2.9 Servlet技术也会引起“非线程安全”问题 22
1.2.10 留意i--与System.out.println()出现的“非线程安全”问题 25
1.2.11 方法run()被JVM所调用 27
1.3 方法currentThread() 27
1.4 方法isAlive() 30
1.5 方法sleep(long millis) 33
1.6 方法sleep(long millis, int nanos) 34
1.7 方法StackTraceElement[] getStack-Trace() 35
1.8 方法static void dumpStack() 36
1.9 方法Map getAllStackTraces() 37
1.10 方法getId() 39
1.11 停止线程 40
1.11.1 停止不了的线程 41
1.11.2 判断线程是不是停止状态 42
1.11.3 清除中断状态的使用场景 44
1.11.4 能停止的线程—异常法 48
1.11.5 在sleep状态下停止 51
1.11.6 使用stop()暴力停止线程 53
1.11.7 方法stop()与java.lang.Thread-Death异常 55
1.11.8 使用stop()释放锁导致数据结果不一致 57
1.11.9 使用return;语句停止线程的缺点及相应的解决方案 59
1.12 暂停线程 61
1.12.1 方法suspend()与resume()的使用 62
1.12.2 方法suspend()与resume()的缺点—独占 63
1.12.3 方法suspend()与resume()的缺点—数据不完整 66
1.12.4 使用LockSupport类实现线程暂停与恢复 67
1.13 方法yield() 69
1.14 线程的优先级 70
1.14.1 线程优先级的继承特性 71
1.14.2 线程优先级的规律性 72
1.14.3 线程优先级的随机性 75
1.14.4 看谁跑得快 76
1.15 守护线程 78
1.16 并发与并行 79
1.17 同步与异步 80
1.18 多核CPU不一定比单核CPU运行快 81
1.19 本章小结 82
第2章 对象及变量的并发访问 83
2.1 synchronized同步方法 83
2.1.1 方法内的变量是线程安全的 83
2.1.2 实例变量“非线程安全”问题及解决方案 85
2.1.3 同步synchronized在字节码指令中的原理 88
2.1.4 多个对象多个锁 90
2.1.5 synchronized方法将对象作为锁 92
2.1.6 脏读与解决 97
2.1.7 synchronized锁重入 99
2.1.8 继承环境下的锁重入 100
2.1.9 出现异常,锁自动释放 102
2.1.10 非同步方法:不使用synchronized重写方法 104
2.2 synchronized同步语句块 106
2.2.1 synchronized方法的弊端 106
2.2.2 synchronized同步代码块的使用 109
2.2.3 用同步代码块解决同步方法的弊端 111
2.2.4 一半异步,一半同步 112
2.2.5 synchronized代码块间的同步性 114
2.2.6 方法println()也是同步的 116
2.2.7 验证synchronized(this)同步代码块是锁定当前对象的 117
2.2.8 将任意对象作为锁 119
2.2.9 多个锁就是异步执行 121
2.2.10 验证方法被调用是随机的 124
2.2.11 不同步导致的逻辑错误与解决方案 125
2.2.12 细化验证3个结论 129
2.2.13 类对象的单例性 134
2.2.14 静态同步:synchronized方法与synchronized(class)代码块 135
2.2.15 同步synchronized方法可以对类的所有对象实例起作用 139
2.2.16 同步synchronized(class)代码块可以对类的所有对象实例起作用 141
2.2.17 String常量池特性与同步问题 143
2.2.18 synchronized方法无限等待问题与解决方案 146
2.2.19 多线程的死锁 148
2.2.20 内置类与静态内置类 150
2.2.21 内置类与同步:实验1 153
2.2.22 内置类与同步:实验2 155
2.2.23 锁对象改变导致异步执行 156
2.2.24 锁对象不改变依然是同步执行 159
2.2.25 同步写法案例比较 161
2.2.26 方法holdsLock(Object obj)的使用 161
2.2.27 临界区 162
2.3 volatile关键字 162
2.3.1 可见性的测试 163
2.3.2 原子性与非原子性的测试 171
2.3.3 禁止代码重排序的测试 179
2.4 本章小结 190
第3章 线程间通信 191
3.1 wait/ notify机制 191
3.1.1 不使用wait/notify机制进行通信的缺点 191
3.1.2 什么是wait/notify机制 194
3.1.3 wait/notify机制的原理 194
3.1.4 方法wait()的基本用法 195
3.1.5 使用代码完整实现wait /notify机制 196
3.1.6 使用wait/notify机制实现线程销毁 198
3.1.7 对业务代码进行封装 200
3.1.8 线程状态的切换 203
3.1.9 方法wait()导致锁立即释放 204
3.1.10 方法sleep()不释放锁 206
3.1.11 方法notify()不立即释放锁 206
3.1.12 方法interrupt()遇到方法wait() 208
3.1.13 方法notify()只通知一个线程 210
3.1.14 方法notifyAll()通知所有线程 212
3.1.15 方法wait(long)的基本用法 213
3.1.16 方法wait(long)自动向下运行的条件 215
3.1.17 通知过早与相应的解决方案 218
3.1.18 等待条件发生变化 220
3.1.19 生产者/消费者模式实现 224
3.1.20 在管道中传递字节流 239
3.1.21 在管道中传递字符流 241
3.1.22 利用wait/notify机制实现交叉备份 244
3.1.23 方法sleep()和wait()的区别 247
3.2 方法join()的使用 247
3.2.1 学习方法join()前的铺垫 247
3.2.2 用方法join()解决问题 248
3.2.3 方法join()和interrupt()出现异常 250
3.2.4 方法join(long)的使用 252
3.2.5 方法join(long)与sleep(long)的区别 254
3.2.6 方法join()后的代码提前运行 257
3.2.7 方法join(long millis, int nanos)的使用 261
3.3 类ThreadLocal的使用 262
3.3.1 方法get()与null 262
3.3.2 类ThreadLocal存取数据流程分析 263
3.3.3 验证线程变量的隔离性 266
3.3.4 解决get()返回null的问题 270
3.3.5 验证重写initialValue()方法的隔离性 271
3.3.6 使用remove()方法的必要性 272
3.4 类InheritableThreadLocal的使用 276
3.4.1 类ThreadLocal不能实现值继承 277
3.4.2 使用InheritableThreadLocal体现值继承特性 278
3.4.3 值继承特性在源代码中的执行流程 280
3.4.4 父线程有最新的值,子线程还是旧值:不可变类型 285
3.4.5 子线程有最新的值,父线程还是旧值:不可变类型 286
3.4.6 子线程可以感应对象属性值的变化:可变类型 288
3.4.7 重写childValue方法实现对继承值的加工 291
3.5 本章小结 291
第4章 锁的使用 292
4.1 使用ReentrantLock类 292
4.1.1 使用ReentrantLock实现同步 292
4.1.2 验证多代码块间的同步性 294
4.1.3 方法await()的错误用法与相应的解决方案 297
4.1.4 使用方法await()和方法signal()实现wait/notify 300
4.1.5 方法await()暂停的原理 302
4.1.6 通知部分线程:错误用法 306
4.1.7 通知部分线程:正确用法 308
4.1.8 实现生产者/消费者模式一对一交替打印 311
4.1.9 实现生产者/消费者模式多对多交替打印 313
4.1.10 公平锁与非公平锁 315
4.1.11 方法getHoldCount()的使用 318
4.1.12 方法getQueueLength()的使用 319
4.1.13 方法getWaitQueueLength(Condition condition)的使用 321
4.1.14 方法hasQueuedThread(Thread thread)的使用 322
4.1.15 方法hasQueuedThreads()的使用 323
4.1.16 方法hasWaiters(Condition condition)的使用 324
4.1.17 方法isFair()的使用 326
4.1.18 方法isHeldByCurrentThread()的使用 326
4.1.19 方法isLocked()的使用 327
4.1.20 方法lockInterruptibly()的使用 328
4.1.21 方法tryLock()的使用 330
4.1.22 方法tryLock(long timeout, Time-Unit unit)的使用 331
4.1.23 方法await(long time, TimeUnit unit)的使用 333
4.1.24 方法awaitNanos(long nanos-Timeout)的使用 334
4.1.25 方法awaitUntil(Date deadline)的使用 335
4.1.26 方法awaitUninterruptibly()的使用 337
4.1.27 实现线程按顺序执行业务 339
4.2 使用ReentrantReadWriteLock类 342
4.2.1 类ReentrantLock的缺点 342
4.2.2 读读共享 344
4.2.3 写写互斥 344
4.2.4 读写互斥 345
4.2.5 写读互斥 346
4.3 本章小结 347
第5章 定时器 348
5.1 定时器的使用 348
5.1.1 方法schedule(TimerTask task, Date time)的测试 349
5.1.2 方法schedule(TimerTask task, Date firstTime, long period)的测试 357
5.1.3 方法schedule(TimerTask task, long delay)的测试 365
5.1.4 方法schedule(TimerTask task, long delay, long period)的测试 365
5.1.5 方法scheduleAtFixedRate(TimerTask task, Date first-Time, long period)的测试 366
5.2 本章小结 374
第6章 单例模式与多线程 375
6.1 单例模式与多线程 375
6.1.1 立即加载/饿汉模式 375
6.1.2 延迟加载/懒汉模式 377
6.1.3 使用静态内置类实现单例模式 388
6.1.4 序列化与反序列化的单例模式实现 389
6.1.5 使用static代码块实现单例模式 392
6.1.6 使用enum枚举数据类型实现单例模式 393
6.1.7 完善使用enum枚举实现单例模式 394
6.2 本章小结 396
第7章 拾遗增补 397
7.1 线程的状态 397
7.1.1 验证NEW、RUNNABLE和TERMINATED 399
7.1.2 验证TIMED_WAITING 400
7.1.3 验证BLOCKED 401
7.1.4 验证WAITING 403
7.2 线程组 404
7.2.1 线程对象关联线程组:一级关联 404
7.2.2 线程对象关联线程组:多级关联 406
7.2.3 线程组自动归属特性 407
7.2.4 获取根线程组 408
7.2.5 线程组内加线程组 409
7.2.6 组内的线程批量停止 409
7.2.7 递归取得与非递归取得组内对象 410
7.3 Thread.activeCount()方法的使用 412
7.4 Thread.enumerate(Thread tarray[])方法的使用 412
7.5 再次验证线程执行有序性 412
7.6 类SimpleDateFormat非线程安全 414
7.6.1 出现异常 415
7.6.2 解决方法1 417
7.6.3 解决方法2 418
7.7 线程中出现异常的处理 420
7.7.1 线程出现异常的默认行为 420
7.7.2 使用setUncaughtException-Handler()方法进行异常处理 421
7.7.3 使用setDefaultUncaught-ExceptionHandler()方法进行异常处理 422
7.8 线程组内处理异常 423
7.9 线程异常处理的优先性 426
7.10 本章小结 431
第8章 并发集合框架 432
8.1 集合框架结构 432
8.1.1 接口Iterable 432
8.1.2 接口Collection 432
8.1.3 接口List 433
8.1.4 接口Set 434
8.1.5 接口Queue 435
8.1.6 接口Deque 435
8.2 非阻塞队列 435
8.2.1 类ConcurrentHashMap的使用 436
8.2.2 类ConcurrentSkipListMap的使用 442
8.2.3 类ConcurrentSkipListSet的使用 444
8.2.4 类ConcurrentLinkedQueue的使用 447
8.2.5 类ConcurrentLinkedDeque的使用 451
8.2.6 类CopyOnWriteArrayList的使用 453
8.2.7 类CopyOnWriteArraySet的使用 454
8.3 阻塞队列 456
8.3.1 类ArrayBlockingQueue与公平/非公平锁的使用 456
8.3.2 类PriorityBlockingQueue的使用 461
8.3.3 类LinkedBlockingQueue的使用 463
8.3.4 类LinkedBlockingDeque的使用 463
8.3.5 类SynchronousQueue的使用 463
8.3.6 类DelayQueue的使用 466
8.3.7 类LinkedTransferQueue的使用 467
8.4 本章小结 476
第9章 线程池类ThreadPoolExecutor的使用 477
9.1 Executor接口介绍 477
9.2 使用Executors工厂类创建线程池 481
9.2.1 使用newCachedThreadPool()方法创建无界线程池 481
9.2.2 验证newCachedThreadPool()方法创建线程池和线程复用特性 483
9.2.3 使用newCachedThreadPool (ThreadFactory)方法定制线程工厂 486
9.2.4 使用newCachedThread-Pool()方法创建无界线程池的缺点 487
9.2.5 使用newFixedThreadPool(int)
方法创建有界线程池 488
9.2.6 使用newSingleThread-Executor()方法创建单一线程池 490
9.3 ThreadPoolExecutor类的使用 491
9.3.1 队列LinkedBlocking-Queue、ArrayBlocking-Queue和Synchronous-Queue的基本使用 491
9.3.2 构造方法参数详解 495
9.3.3 方法shutdown()和shutdownNow() 521
9.3.4 方法List shutdown-Now()返回值的作用 525
9.3.5 方法shutdown()和shutdown-Now()与中断 527
9.3.6 方法isShutdown() 529
9.3.7 方法isTerminating()和isTerminated() 530
9.3.8 方法awaitTermination(long timeout,TimeUnit unit) 531
9.3.9 工厂ThreadFactory+Thread+UncaughtExceptionHandler处理异常 533
9.3.10 方法set/getRejected-ExecutionHandler() 537
9.3.11 方法allowsCoreThreadTime-Out和allowCoreThreadTime-Out(bool) 539
9.3.12 方法prestartCoreThread()和prestartAllCoreThreads() 541
9.3.13 方法getCompletedTask-Count() 542
9.3.14 线程池ThreadPoolExecutor的拒绝策略 543
9.3.15 方法afterExecute()和beforeExecute() 549
9.3.16 方法remove(Runnable)的使用 551
9.3.17 多个get方法的测试 555
9.4 本章小结 558



---------------------------8010626 - Java高并发编程详解:多线程与架构设计---------------------------


推荐序一
推荐序二
推荐序三
推荐序四
前言
第一部分 多线程基础
第1章 快速认识线程 3
1.1 线程的介绍 3
1.2 快速创建并启动一个线程 3
1.2.1 尝试并行运行 4
1.2.2 并发运行交替输出 5
1.2.3 使用Jconsole观察线程 6
1.3 线程的生命周期详解 7
1.3.1 线程的NEW状态 8
1.3.2 线程的RUNNABLE状态 8
1.3.3 线程的 RUNNING状态 8
1.3.4 线程的BLOCKED状态 8
1.3.5 线程的TERMINATED状态 9
1.4 线程的start方法剖析:模板设计模式在Thread中的应用 9
1.4.1 Thread start方法源码分析以及注意事项 9
1.4.2 模板设计模式在Thread中的应用 11
1.4.3 Thread模拟营业大厅叫号机程序 13
1.5 Runnable接口的引入以及策略模式在Thread中的使用 16
1.5.1 Runnable的职责 16
1.5.2 策略模式在Thread中的应用 16
1.5.3 模拟营业大厅叫号机程序 18
1.6 本章总结 19
第2章 深入理解Thread构造函数 20
2.1 线程的命名 20
2.1.1 线程的默认命名 21
2.1.2 命名线程 21
2.1.3 修改线程的名字 22
2.2 线程的父子关系 22
2.3 Thread与ThreadGroup 23
2.4 Thread与Runnable 24
2.5 Thread与JVM虚拟机栈 25
2.5.1 Thread与Stacksize 25
2.5.2 JVM内存结构 27
2.5.3 Thread与虚拟机栈 30
2.6 守护线程 33
2.6.1 什么是守护线程 33
2.6.2 守护线程的作用 34
2.7 本章总结 34
第3章 Thread API的详细介绍 35
3.1 线程sleep 35
3.1.1 sleep方法介绍 35
3.1.2 使用TimeUnit替代Thread.sleep 36
3.2 线程yield 37
3.2.1 yield方法介绍 37
3.2.2 yield和sleep 37
3.3 设置线程的优先级 38
3.3.1 线程优先级介绍 38
3.3.2 线程优先级源码分析 39
3.3.3 关于优先级的一些总结 40
3.4 获取线程ID 40
3.5 获取当前线程 41
3.6 设置线程上下文类加载器 41
3.7 线程interrupt 42
3.7.1 interrupt 42
3.7.2 isInterrupted 43
3.7.3 interrupted 45
3.7.4 interrupt注意事项 46
3.8 线程join 47
3.8.1 线程join方法详解 48
3.8.2 join方法结合实战 50
3.9 如何关闭一个线程 53
3.9.1 正常关闭 54
3.9.2 异常退出 56
3.9.3 进程假死 56
3.10 本章总结 58
第4章 线程安全与数据同步 59
4.1 数据同步 59
4.1.1 数据不一致问题的引入 59
4.1.2 数据不一致问题原因分析 61
4.2 初识 synchronized关键字 62
4.2.1 什么是synchronized 63
4.2.2 synchronized关键字的用法 63
4.3 深入synchronized关键字 65
4.3.1 线程堆栈分析 65
4.3.2 JVM指令分析 67
4.3.3 使用synchronized需要注意的问题 70
4.4 This Monitor和Class Monitor的详细介绍 72
4.4.1 this monitor 72
4.4.2 class monitor 74
4.5 程序死锁的原因以及如何诊断 77
4.5.1 程序死锁 77
4.5.2 程序死锁举例 77
4.5.3 死锁诊断 80
4.6 本章总结 81
第5章 线程间通信 82
5.1 同步阻塞与异步非阻塞 82
5.1.1 同步阻塞消息处理 82
5.1.2 异步非阻塞消息处理 83
5.2 单线程间通信 84
5.2.1 初识wait和notify 84
5.2.2 wait和notify方法详解 87
5.2.3 关于wait和notify的注意事项 89
5.2.4 wait和sleep 90
5.3 多线程间通信 90
5.3.1 生产者消费者 90
5.3.2 线程休息室wait set 93
5.4 自定义显式锁BooleanLock 94
5.4.1 synchronized关键字的缺陷 94
5.4.2 显式锁BooleanLock 95
5.5 本章总结 104
第6章 ThreadGroup详细讲解 105
6.1 ThreadGroup与Thread 105
6.2 创建ThreadGroup 105
6.3 复制Thread数组和ThreadGroup数组 106
6.3.1 复制Thread数组 106
6.3.2 复制ThreadGroup数组 109
6.4 ThreadGroup操作 109
6.4.1 ThreadGroup的基本操作 110
6.4.2 ThreadGroup的interrupt 113
6.4.3 ThreadGroup的destroy 114
6.4.4 守护ThreadGroup 115
6.5 本章总结 116
第7章 Hook线程以及捕获线程执行异常 117
7.1 获取线程运行时异常 117
7.1.1 UncaughtExceptionHandler的介绍 117
7.1.2 UncaughtExceptionHandler实例 118
7.1.3 UncaughtExceptionHandler源码分析 119
7.2 注入钩子线程 121
7.2.1 Hook线程介绍 121
7.2.2 Hook线程实战 122
7.2.3 Hook线程应用场景以及注意事项 124
7.3 本章总结 124
第8章 线程池原理以及自定义线程池 125
8.1 线程池原理 125
8.2 线程池实现 126
8.2.1 线程池接口定义 127
8.2.2 线程池详细实现 131
8.3 线程池的应用 139
8.4 本章总结 142
第二部分 Java ClassLoader
第9章 类的加载过程 144
9.1 类的加载过程简介 144
9.2 类的主动使用和被动使用 145
9.3 类的加载过程详解 148
9.3.1 类的加载阶段 148
9.3.2 类的连接阶段 149
9.3.3 类的初始化阶段 154
9.4 本章总结 156
第10章 JVM类加载器 158
10.1 JVM内置三大类加载器 158
10.1.1 根类加载器介绍 159
10.1.2 扩展类加载器介绍 159
10.1.3 系统类加载器介绍 160
10.2 自定义类加载器 161
10.2.1 自定义类加载器,问候世界 161
10.2.2 双亲委托机制详细介绍 165
10.2.3 破坏双亲委托机制 167
10.2.4 类加载器命名空间、运行时包、类的卸载等 170
10.3 本章总结 175
第11章 线程上下文类加载器 177
11.1 为什么需要线程上下文类加载器 177
11.2 数据库驱动的初始化源码分析 178
11.3 本章总结 180
第三部分 深入理解volatile关键字
第12章 volatile关键字的介绍 182
12.1 初识volatile关键字 182
12.2 机器硬件CPU 184
12.2.1 CPU Cache模型 184
12.2.2 CPU缓存一致性问题 186
12.3 Java内存模型 187
12.4 本章总结 188
第13章 深入volatile关键字 189
13.1 并发编程的三个重要特性 189
13.1.1 原子性 189
13.1.2 可见性 190
13.1.3 有序性 190
13.2 JMM如何保证三大特性 191
13.2.1 JMM与原子性 192
13.2.2 JMM与可见性 193
13.2.3 JMM与有序性 194
13.3 volatile关键字深入解析 195
13.3.1 volatile关键字的语义 195
13.3.2 volatile的原理和实现机制 197
13.3.3 volatile的使用场景 198
13.3.4 volatile和synchronized 199
13.4 本章总结 200
第14章 7种单例设计模式的设计 201
14.1 饿汉式 201
14.2 懒汉式 202
14.3 懒汉式+同步方法 203
14.4 Double-Check 204
14.5 Volatile+Double-Check 206
14.6 Holder方式 206
14.7 枚举方式 207
14.8 本章总结 208
第四部分 多线程设计架构模式
第15章 监控任务的生命周期 212
15.1 场景描述 212
15.2 当观察者模式遇到Thread 212
15.2.1 接口定义 212
15.2.2 ObservableThread实现 215
15.3 本章总结 217
15.3.1 测试运行 217
15.3.2 关键点总结 219
第16章 Single Thread Execution设计模式 220
16.1 机场过安检 220
16.1.1 非线程安全 221
16.1.2 问题分析 223
16.1.3 线程安全 225
16.2 吃面问题 225
16.2.1 吃面引起的死锁 226
16.2.2 解决吃面引起的死锁问题 228
16.2.3 哲学家吃面 229
16.3 本章总结 230
第17章 读写锁分离设计模式 231
17.1 场景描述 231
17.2 读写分离程序设计 232
17.2.1 接口定义 232
17.2.2 程序实现 234
17.3 读写锁的使用 239
17.4 本章总结 242
第18章 不可变对象设计模式 244
18.1 线程安全性 244
18.2 不可变对象的设计 244
18.2.1 非线程安全的累加器 245
18.2.2 方法同步增加线程安全性 247
18.2.3 不可变的累加器对象设计 248
18.3 本章总结 249
第19章 Future设计模式 251
19.1 先给你一张凭据 251
19.2 Future设计模式实现 251
19.2.1 接口定义 252
19.2.2 程序实现 253
19.3 Future的使用以及技巧总结 256
19.4 增强FutureService使其支持回调 257
19.5 本章总结 258
第20章 Guarded Suspension设计模式 259
20.1 什么是Guarded Suspension设计模式 259
20.2 Guarded Suspension的示例 259
20.3 本章总结 261
第21章 线程上下文设计模式 262
21.1 什么是上下文 262
21.2 线程上下文设计 263
21.3 ThreadLocal详解 264
21.3.1 ThreadLocal的使用场景及注意事项 265
21.3.2 ThreadLocal的方法详解及源码分析 265
21.3.3 ThreadLocal的内存泄漏问题分析 270
21.4 使用ThreadLocal设计线程上下文 274
21.5 本章总结 276
第22章 Balking设计模式 277
22.1 什么是Balking设计 277
22.2 Balking模式之文档编辑 278
22.2.1 Document 278
22.2.2 AutoSaveThread 280
22.2.3 DocumentEditThread 281
22.3 本章总结 283
第23章 Latch设计模式 284
23.1 什么是Latch 284
23.2 CountDownLatch程序实现 285
23.2.1 无限等待的Latch 285
23.2.2 有超时设置的Latch 289
23.3 本章总结 291
第24章 Thread-Per-Message设计模式 293
24.1 什么是Thread-Per-Message模式 293
24.2 每个任务一个线程 293
24.3 多用户的网络聊天 296
24.3.1 服务端程序 296
24.3.2 响应客户端连接的Handler 297
24.3.3 聊天程序测试 299
24.4 本章总结 300
第25章 Two Phase Termination设计模式 301
25.1 什么是Two Phase Termination模式 301
25.2 Two Phase Termination的示例 302
25.2.1 线程停止的Two Phase Termination 302
25.2.2 进程关闭的Two Phase Termination 303
25.3 知识扩展 304
25.3.1 Strong Reference及LRUCache 304
25.3.2 Soft Reference及SoftLRUCache 308
25.3.3 Weak Reference 311
25.3.4 Phantom Reference 312
25.4 本章总结 314
第26章 Worker-Thread设计模式 315
26.1 什么是Worker-Thread模式 315
26.2 Worker-Thread模式实现 315
26.2.1 产品及组装说明书 316
26.2.2 流水线传送带 317
26.2.3 流水线工人 319
26.3 本章总结 320
26.3.1 产品流水线测试 320
26.3.2 Worker-Thread和Producer-Consumer 321
第27章 Active Objects设计模式 323
27.1 接受异步消息的主动对象 323
27.2 标准Active Objects模式设计 323
27.2.1 OrderService接口设计 325
27.2.2 OrderServiceImpl 详解 325
27.2.3 OrderServiceProxy详解 326
27.2.4 MethodMessage 328
27.2.5 ActiveMessageQueue 330
27.2.6 OrderServiceFactory及测试 332
27.3 通用Active Objects框架设计 333
27.3.1 ActiveMessage详解 334
27.3.2 @ActiveMethod 336
27.3.3 ActiveServiceFactory详解 337
27.3.4 ActiveMessageQueue及其他 339
27.4 本章总结 341
第28章 Event Bus设计模式 342
28.1 Event Bus设计 343
28.1.1 Bus接口详解 343
28.1.2 同步EventBus详解 345
28.1.3 异步EventBus详解 347
28.1.4 Subscriber注册表Registry详解 348
28.1.5 Event广播Dispatcher详解 350
28.1.6 其他类接口设计 353
28.1.7 Event Bus测试 355
28.2 Event Bus实战——监控变化 357
28.2.1 WatchService遇到EventBus 357
28.2.2 FileChangeEvent 359
28.2.3 监控变化 359
28.3 本章总结 360
第29章 Event Driven设计模式 361
29.1 Event-Driven Architecture基础 361
29.1.1 Events 361
29.1.2 Event Handlers 362
29.1.3 Event Loop 363
29.2 开发一个Event-Driven框架 364
29.2.1 同步EDA框架设计 364
29.2.2 异步EDA框架设计 370
29.3 Event-Driven的使用 375
29.3.1 Chat Event 375
29.3.2 Chat Channel(Handler) 376
29.3.3 Chat User线程 377
29.4 本章总结 379

推荐

车牌查询
桂ICP备20004708号-3